
I

(NASA-CB-114486) H Y B R I D CODING SYSTERS N72-32206
STUDY Final Report 3 , F , Odenualder, et a1
(Linkabit Corp.) Sep. 1972 139 p CSCL 0 9 8

Unclas
G3/C6 42039

UNKABIT CORPORATION

10463 R O S N E STREET
UNIVERSITY INDUSTMA1 PARK

SAN DIEGO, CAUFORNIA 92121

TABLE OF CONTENTS

Section Page No.

1.0 INTRODUCTION 1

2.0 CONCATENATED CODING AND DECODING 8

2.1 Operation
2.2 Performance
2.3 Implementation

2.3.1 Encoder and Interleaver Design
2.3.2 Unscrambler and Decoder Storage

2.3.3 Reed-Solomon Decoding Procedure

Implenen ta t ion

2.5.1 Hardware Implementation of Field

2.5.2 Hardware Encoder and Interleaver Design
2.5.3 Synchronization Implementation
2.5.4 Hardware Unscrambler Implementation
2.5-5 Hardware Reed-Solomon Decoder Design

2.5.5.1 Syndrome Calculation
2.5.5.2 Berlekanp Algorithm Implementation
2.5.5.3 Chien Search and Error Evaluation

Preparation
2.5.5.4 Chien Search and Error Evaluation

Implementation

2.4 Part Software and Part Hardware Decoder

2.5 Hardware Implementation

Operations

2.5.6 Hardware Implementation Summary

9
11
25
27

29
32

36
40

40
45
49
50
50
53
53

61
63
66

3.0 HYBRID BOOTSTRAP DECODING 68

?.I Performance Results 68
Hybrid Bootstrap Sequential Decoder Implementation 74
3.2-1 Decoder Memory Organization 76

2

3.2.2 Decoding Logic 77
3.2.3 Track Control Logic 84
3.2.4 Parts Count Estimation a7

3.3.1 Multiple Processors 89
3.3.2 Bootstrap Trellis Decoding 90

3.2.5 Decoder Computation Rate 88
3.3 Other Bootstrap Decoding Techniques 89

3.3.2.1 Description of Rudimentary Decoder 90
3.3.2.2 Analytical Performance Estimates 92
3.3.2.3 Refinements of the Decoding

Algor it hm 96

4.0 CONCLUSIONS AND RECOMMENDATIONS 103

APPENDIX A 106

REFERENCES 134

TABLE OF FIGU&ES

Figure Nom

2m2m2

2.2m3

2,2,4

2,2,5

2.2.6

2m2m7

2m2,8

2m3e1
2,3m2
2.3m3
2a3.4
2,5,1
2.5.2
2,5,3
2m5.4
2.5.5
2.5.6
2m5.7
2m5.8
2m5m9

2e5m10
2,5,11
2,5m12
3e1.1

3,2,1
3.2,2
3b2.3

3.2.4

T i t l e Paqe No.

Concatenated Coding System 10
Concatenated Coding Performance with a
K=7, R=1/2 Inner Code and 6 bits/R-S symbol 16
Concatenated Coding Performance with a
K=7, R=1/2 Inner Code and 7 bits /R-S symbol 17
Concatenated Coding Performance with a
K=7, R=1/2 Inner Code and 8 bits/R-S symbol 18
Concatenated Cdding Performance with a
K=7, R=1/2 Inner Code and 9 b i t s / R - S synbol 19
Summary of Concatenated Coding Performance
with K=7, R=1/2 Inner Code 2 1
Summary of Concatenated Coding Per ornance
with K=8, R=1/2 Inner Code and a *'-Symbol
E-Error Correct ing Outer C o d e 22
Summary of Concatenated Coding Performance
with K=8, R=1/3 Inner Code and a 2J-Symbol
E-Error Correct ing Outer C o d e 23
Summary of Concatenated Codiny Performance
with K=8, R=1/7 Inner Code and a 2J-Symb01

Outer Code Array 26
Outer Encoder and I n t e r l e a v e r 28
Unscrambler Implementation 30

34

Al t e rna te Field Mul t ip l i ca t ion Implementation 44
Outer Encoder and Interleaver Implementation 46
Reed-Solomon Decoder Block Diagram 51
Reed-Solomon Decoder Timirug Diagram 52

Berlekamp A l g o r i t h m Block Diagram 56

Block Diagram of t h e Main Processor of t h e
Berlekamp A l g o r i t h m 58
Berlekamp Algorithm Inp le ren ta t ion 60
Chien Search and Error Ev,. luation Preparation 62
Chien Search and E r r c x Ev; l u a t i o n Procedure 64
Extrapolated Dis t r ibu t ions , Octal Hybrid
Sequential Decoder 70
Erasure P robab i l i t y for 15 MCPS Hybrid

Hybrid Bootst rap Sequent ia l Decoder Branch 78
Complementary D i s t r i b u L o n Function f o r MT f o r
rate 1/2, inner code, 7- t rack Hybrid Bootst rap
Decoder 79
S e n s i t i v i t y of BootstraLl Decoder Computations
t o Quant iza t ion of Metrics and of KLEFT 80

E-Error Correct ing O u t e r Code 24

'Procedure f o r Calcu la t ing t h e ith Syndrome
Al t e rna te Field Mul t ip l i ca t ion Procedure 43

Syndrome Calcula t ion 54

dn Calcula t ion Procedrtxo 57

Sequent ia l Decoder, Rate 1/3, Octal Channel 73
Hybrid Bootst rap Sequent ia l Decodl;r 75

TABLE OF TABLES

Table No . T i t l e Paqe N o .

100.1 Summary of Decoder Performance 2

2,401 Software R-S Decoder Speeds 38

2,501 Sununary of thc estimated number of chips
required to hardware implement a concatenated
coding system with a K=8, R=1/3 convolutional
inner code and a J=8, E = l 6 R-S outer code
with 1=16 l e v e l s of interleaving 67

301.1

A. 1

Approximate I C Requirements for Hybrid
Bootstrap Sequential Decoding 87

LSNKABIT Supplement to the IBM 1130 Assembly
Language Instruction Set 108

1.0 In t roduct ion

With the growth-of d i g i t a l space communication i n

the past decade, t h e in t roduc t ion of sophisticated coding

techniques has provided e f f i c i e n c y improvements which have

r e s u l t e d i n reduct ions of requi red p o w e r or extended com-

munication range for numerous space missions. While e a r l y

coding a p p l i c a t i o n s w e r e for r e l a t i v e l y l o w data rates,

r e c e n t emphasis has been on real- t ime decoders capable of

opera t ion a t data rates above 1 Mbps and even approaching

100 Mbps. These e f for t s have r e s u l t e d i n t he development

of high speed decoders which provide on the order of 4 t o

6 dB of coding ga in depending on the data rate, code rate

or bandwidth expansion, and error p r o b a b i l i t y requirements.

The l e f t half of T a b l e l . O . l summarizes t h e p re sen t

state of e f f i c i e n c y improvement a v a i l a b l e w i t h h igh speed

decoders p resen t ly i n opera t ion or under development.

The requi red r a t io of bit-energy-to-noise-density, Eb/NO,

is given i n each case for b i t e r r o r probabilities of
-7" and 1 0 .

When the data speed requirements are reduced t o the

levels of deep space a p p l i c a t i o n s , which are on t h e order

of from 1 Kbps t o 100 Kbps, greater coding g a i n s can be

achieved. A t these reduced speeds, sequen t i a l decoding

p a r t i c u l a r l y can be shown t o operate more e f f i c i e n t l y .

*Only convolut ional codes are considered here. Block codes
which were common i n e a r l y a p p l i c a t i o n s are so d e f i n i t e l y
i n f e r i o r both i n required complexity and i n r e s u l t i n g per-
formance t h a t t h e i r f u r t h e r t reatment is n o t worthwhile fo r
tho systems under cons idera t ion , o the r than as o u t e r codes
in a concatenated coding system.

-1-

cy

cy

CI

m

c5
rl

0

cy

Q)

cy
?

m ab
4

(3

3; 'co

I

s I

I

?
cy

*
0

0
0

OD
* I

U
0

IC

m I
u)

- 4
OD

0

d
Pi

-2-

A hard quantized high speed sequential decoder can be

operated with about 1 dB less Eb/No, because of the in-

creased number of computations per bit period, Further

performance can be gained at lower speeds by using soft

'8 or more level) quantization and thus regaining most

of the 2 dB loss inherent in hard (2 level) quantization.

Also,mOre efficient Viterbi decoders are possible at re-

duced data rates, although the improvement in this case

is not as great,

The potential performance of low rate decoders is

shown in the middle columns of Table 1.0.1. For the se-

quential decoder, we consider a code-rate 1/3 system,

Assuming a computation speed of 1 Megacomputations/second

on soft decision data, a 64 K bit buffer, and a 500 bit

block length with frame resynchronization, we find an

improvement of about 2.3 dB relative to the hard decision,

code-rate 1/2, high speed sequential decoder operating

at 40 Mbps. The improvement is about 1 dB less if both

are operating at 100 Kbps. For the Viterbi decoder, we

consider a constraint-length 8, code-rate 1/3 decoder which is

considerably less complex than the low rate sequential decoder.

Its performance is equivalent or better for bit error

rates above loo4, but it becomes progressively worse at

low error rates, Improvements in either system through

increased complexity (larger buffer and higher computation

speed with ECL logic for the sequential decoder - higher

-3-

c o n s t r a i n t l eng ths w i t h g r e a t l y increased path and metric

memory requirements for t h e V i t e r A decoder) are very

c o s t l y and could ga in on the order of 0.5 dB.

A more promising approach a t l o w data rates is the

use of concatenated o r hybrid coding and decoding tech-

niques. T h i s s tudy deals w i t h the performance and imple-

mentation of two p a r t i c u l a r l y promising techniqes , shown

in the right-hand par t of Table 1.0.1. Each is based es-

s e n t i a l l y on one of the decoders j u s t discussed, augmented

by an a d d i t i o n a l device (block decoder for the concatenated

system - c o n t r o l l o g i c and a d d i t i o n a l metric c a l c u l a t o r s

for t h e hybrid system) whose complexity is n o t greater

than tha t of t h e o r i g i n a l decoders. Y e t t h e r e s u l t i n g im-

provement is much greater than would be poss ib l e i f the

o r i g i n a l decoders were simply upgraded by increas ing

the complexity o r speed i n the manners discussed above.

Some of t h e conclusions are summarized i n t he t w o

rightmost columns of Table 1.0.1. The performance of the

two systems are remarkably s i m i l a r and t h e requi red buf fer

s i z e s are approximately t h e same. The concatenated approach

appears t o r e q u i r e about one t h i r d fewer IC's, and these

are of the TTL rather than of t h e MSI ECL logic family.

The la t ter are required by the hybrid system because of

the high required speed factor of the sequen t i a l decoder.

These advantages are p a r t i a l l y offset by t h e fact t h a t t h e

concatenated system r e q u i r e s s eve ra l read-only memory (ROM)

and random-access memory (RAM) ch ips which are r e l a t i v e l y

expensive, -4-

Otherwise, it a c t u a l l y appears t h a t t h e concatenated

system is preferable and tha t it is even cost-competi t ive

with a simple sequen t i a l decoder, while achieving approxi-

mate ly a 1 d B performance ga in on the la t te r . A l l t h e

systems i n t h e three r ightmost columns r e q u i r e approximately

the same buf fe r s i z e . I n only t w o r e s p e c t s t h e concatenated

system may be i n f e r i o r t o t h e other t w o : namely,whik t h e

sequent ia l decoder gene ra l ly requi re9 about a 30 b i t syn-

chronizat ion sequence (t a i l) for approximately every 500

data b i t s , and the hybrid boo t s t r ap decoder r e q u i r e s about

a 1 6 4 b i t synchronizat ion sequence f o r approximately every

3000 b i t s , the concatenated decoder i n t h e preferred form

r e q u i r e s a 4096 b i t non-data sequence (cons i s t ing pr imar i ly

of ou te r code p a r i t y checks) every 28,672 data b i t s . These

long gaps i n t h e data stream may no t be s i g n i f i c a n t l y d i s -

tu rb ing when many u s e r s are t ime-divis ion multiplexed to-

ge ther , bu t may r ep resen t a s e r i o u s drawback when only one

data stream is sent . T h i s problem can almost c e r t a i n l y be

a l l e v i a t e d by using a staggered in t e r l eav ing scheme.

Unfortunately, t h i s r e q u i r e s t h e simultaneous (though s t i l l

s e r i a l) decoding of seve ra l o u t e r code words. A secondary

and c o r o l l a r y effect is t h a t t h e decoding de lay i n t h e con-

catenated system is of t h e order of 32 t o 64 K b i t s , while

for t h e sequen t i a l and hybrid sequen t i a l systems, it i s

only on t h e order of t h e 64K of bu f fe r s to rage which cor-

responds only t o about 7000 b i t s .

Fina l ly , it should be noted t h a t an ideal rate 1/3

e ight - leve l sof t dec is ion coded sys tem operat ing a t channel

capacity requires a b i t energy-to-noise dens i ty of -0.3 dB.

T h i s means t h a t the t w o systems under considcrat ion are

operat ing a t a t w t 2.5 d B from the u l t ima te capac i ty (or

Shannon l i m i t) of t he coding format. Thus, it appears

from Table 1 .0 t h a t a t Pb = loo7 , there are almost 1 2 d B

of u l t ima te codiny ga in between t h e uncoded system and t h e

ideal coded system operat ing a t channel capaci ty . With the

first l e v e l of s o p h i s t i c a t i o n (le f tmost t h i r d) involving

coding w i t h rate 1 /2 codes, which may opera te up to mult i -

megabit data rates, almost ha l f t h i s ga in i s achievable .

With t h e second l e v e l of soph i s t i ca t ion (middle t h i r d) in-

volving code rate 1/3 lower data rates, longer codes for

Viterbi d'ecoding, and so f t rather than hard dec i s ion

sequent ia l decoding, an Additional 1 t o 2 dB are gained.

Beyond t h i s , t h e t h i r d level of s o p h i s t i c a t i o n under con-

s i d e r a t i o n here ga ins another 1.5 t o 2 d B a t Pb = 1 0

Thus, obviously another such s tep-funct ion inc rease i s j u s t

no t possible.

convinced u s of t h e f u t i l i t y and f r u s t r a t i o n i n f u r t h e r

a t tempts i n reducing t h e small gap l e f t i n achie-rable

coding gain. The next "breakthrough," if it ever occurs ,

might be worth another 0.5 dB.

Sect ion 4.0 , w e conclude t h a t , on t h e basis of p re sen t

theory and technology, t h e concatenated or hybrid coding

-7 .

Experience i n t h i s s tudy and previously has

As w i l l be discussed i n

1

systems under consideration can be realized in a cost-

effective manner and are certain to stand as the ultimate

in coding gain for space cormunication systems far into

the foreseeable future.

Thts final report is organized as follows. In

Section 2 we treat concatenated coding and aecoding, be-

ginning with a review of the principles of operation and

a detailed analysis of performance with various configur-

ations. We then consider several possible implementations

and concentrate on a detailed evaluation of the preferred

hardware implementation. In Section 3, we proceed in the

same way for hybrid coding and decoding. Section 4 presents

our conclusions and recommendations.

2.0 Concatenated CoGi.-.- - - and Decodinq

The principle of concatenated coding and decoding as

a means of reducing the number of errors in received data

in two or more successive stages began with Elias' iterative

coding procedures (Ref. 1). They were extended for block

codes by numerous researchers, the most complete study being

that of Forney (Ref. 2) . Pinsker first (Ref. 3) and later

Stiglitz (Ref. 4) considered concatenation of convolutional

and block codes, using a block code as the inner (first stage)

code in an attempt to improve the channel, so as to increase

the computational cutoff rate Rcomp for the sequential de-

coder operating on the outer (second stage) code. While

this produced interesting theoretical results, it requires

a very coplplex and impractical inner decoder. A much more

reasonable approach is to use the more efficient and power-

ful code - tht convolutiorral code - internally and thus, for
a given complexity, improve the channel as much as possible

for the outer decoder. While the outer decoder nay also be

convolutional, the resulting "super channel" consisting of

the original channel with inner coder and decoder seems

especially well suited to a particular class of block codes

over a multiple alphabet discovered by Reed and Solomon

(Ref. 5). This technique used with Viterbi decoding was

investigated by Odenwalder (Ref. 6) and found ta yield rather

hpresske results. In the remainder of this section, we

concentrate on this apprcac?

-8-

2.1 Operation

The basic block diagram is shown in Figure 2.1.1.

The inner coder-decoder is a short constraint length convo-

lutional coder with a Viterbi (maximum likelihood) decoder.

Typically this decoder is operated at an Eb/No level suffi-

cient to produce a bit error probability in the range

10-2>Pb>10

dancy) block code which then reduces the final block,

and consequently bit, error probability to the desired

level. The most efficient class of codes found for this

purpose are the Reed-Solomon (R-S) codes with a block length

of 2 -1 symbols over a 2 -ary alapiiabet, where the best

-3 . The outer code 5s a high rate (low redun-

J J

choice of J appears to be approximately equal to the con-

straint length of the inner coder. The interleaving buf-

fers are required because the inner decoder errors tend to

occur in bursts, which occasionally are as long as several

constraint lengths. While the outer decoder is undisturbed

by burst errors within a given ZJ-ary symbol (which corres-

ponds to J bits or about one constraint length), its per-

formance is severely degraded by highly correlated errors

among several successive symbols: hence the need for inter-

leaving.

-9-

-10-

2.2 Performance

To evaluate the performance of this concatenated

coding system under cost and complexity constraints, the

significant palameters of the inner code are the R-S symbol

error probability and the distribution of lengths of con-

secutive R-S sy~'~01 errors, the latter being required to

determine tk.e required interleaver dimensions.

Both experimentally and theoretically a more di-

rectly derived indication of inner code performance is the

distribution cf error lengths in bits. The length of an

error-burst for a convolutional code of constraint length K

is naturally defincd as the number of bits starting with

the initial error nnd terminating when K-1 consecutive

correct bits have been received. Let this distribution

of bit error burst lengths be denote2 hd-

= Pr (at.any node an error-burst of length k
terminates) *k

(2.2.1)

We desire to determine the distribution of lengths of con-

secutive R-S symbol errors, P from the bit error burst

distribution Qk.
j'

To determine P. we must recognize, first of all,
3

that the error bursts on t h s inner convolutional code are

totally asynchronous to the outer code symbol phase.

Suppose then that the first incorrect R-S symbol begins

m bits prior to the start of the convolutional code bit

-11-

rror burst. Because of '-he asynchronous nature of the

situation, m is a uniformly distributed random variable

on the interval 0 - < m - < J - 1. Now conditioning on a

fixed m we have

jJ-m

c Qk
Pj(m) =

k= (1-1) J-m+l

, j = 1, 2, ... (2.2.2)

and we define

Summing on the variable m, we have therefore,

J-1 J-1 j J - m

m=O m=O k= (j-1) J-m+l
(2.2.3)

If J > K - 1 , this expression is exact since every subsequence

of J bits must contain at least one error and hence cause the

R-S symbol to be-in error. On the other hand, if J < K - 1 ,

some R-S symbol in the sequence may possibly be correct, so

that (2.2.3) becomes an over estimate at the high end of the

distribution.

To obtain the R-S symbol error probability from the

error length distribution, we need to weigh P by the number

of errors in each case. Since, as pointed out above, we take

all consecutive symbols to be in error, we have for the symbol

j

-12-

error probability

ns = C jPj (2.204)

j =1

Also fron (2.2.3) we can obtain the desired interleaving length.

For example, if we require that the ultimate (outer code)

error probability be Pb, then we should take the interleaver

length L in R-S symbols to be such that

Finally, assuming a long enough

we can neglect error dependencies, the

probability can be bounded as follows.

correcting R-S outer code, a R-S block

more than E symbol errors occur in the

(2.2.5)

interleaver so that

output bit error

For an E-error-

error occurs when

block. When this

happens, the R-S decoder indicates that at most E symbols

are in erior. So, if the superchannel causes E+i,

1 - < i - < 2= - 1 - E, symbol errors in the block, at most
2E + i symbol errors will result. Thus, the concatenated

code symbol probability of error can be upper bounded by

-13-

Since some of th-e bits in an incorrect symbol may be

correct, the bit probability of error is less than or equal

to the symbol probability of error. The symbol errors caused

by the R-S decoder will have about half their bits in error,

while those caused by the superchannel will typically have

from .25 to .40 of their bits in error, depending en the

particular inner code and channel. Here we will simply upper

bound the bit probability of error by the symbol probability

of error. Thus,

To cover the data rates of interest and to provide

the performance data needed to optimize this system for

nrious complexity constraints, the following inner codes

were simulated.

1) K = 7 , R=1/2 with code generators 1 1 1 1 0 0 1
1 0 1 1 0 1 1

2) K = 8 , R=1/2 with code generators 1 1 1 1 1 0 0 1
1 0 1 0 0 1 1 1

3) R = 8 , R=1/3 with code generators 1 1 1 1 0 1 1 1
1 1 0 1 1 0 0 1
1 0 0 1 0 1 0 1

4) K-38, R=1/7 with code generators 1 1 1 1 1 0 0 1
1 0 1 0 0 1 1 1
1 1 1 1 0 1 1 1
1 1 0 1 1 0 0 1
1 0 0 1 0 1 0 1
1 0 0 1 1 1 1 1
1 1 1 0 0 1 0 1

-14-

The code generators in Cases 1, 2, and 3 are those

obtained by Odenwalder in Reference 6.

ators were chosen to minimize the bit probability of error

at large Eb/No ratios.

used here other codes could yield better results.

These code gener-

However, in the range of Eb/No's

The code generators in Case 4 were obtained using the

code generators of Odenwalder's rate 1/3 code, his rate 1/2

code, and the reciprocals of his rate 1/2 code. In this case,

this yields a code with a free distance of 38, which is close

to the upper bound of 40 which Heller (Reference 7) has ob-

tained on the free distance of K=8, R=1/7 codes.

These simulations were for convolutiond coding sys-

tems with practically implementable Viterbi decoders

(Reference 8) using 8 levels of receiver quantization and

a path length memory of 32 bits. The bit error burst length

statistics were computed and equations 2 . 2 . 3 through 2 . 2 7
were used to compute the R-S symbol probability of error,

the distribution of lengths of consecutive R-S symbol

errors, and the bit probability of error bound.

Figures 2.2.1 through 2.2.4 give the concatenated

code bit probability of error bound for a K=7, R=1/2 con-

volutional code and 6, 7, 8, and 9 bits per R-S symbol,

respectively. They show that for a fixed alphabet size

and probability of error, there is an optimum number

-1 5-

n a .

- we Lnda -
Figtire 2.2.1. Concatenated Coding Performance with a K-7,

R=1/2 Inner Code and 6 B i t s / R - S Symbol.

-16-

- we i n UB -
Figure 2.2.2. Concatenated Coding Performance with a R=7,

R4/2 Inner Code and 7 B i t s / R - S Symbol.

-17-

* .
-.%De sa ds --

Figure 2 e 2.3 e Concatenated Coding Performance with a K-7 I
R=1/2 Inner Code and 8 B i t s / R - S Symbol.

-18-

s A

2.2 2.3 2.1 2.5 2.6 - in de - 2.7 2.8 3.9

Figure 2.2.4. Concatenated Coding Performance with a X=7,
R = l / 2 Inner Code and 9 B i t s / R - S Symbol.

-1 9-

of correctable errors, That is, if the outer code is Gesigned

to corr2ct too many errors, the inner code Eb/No decrease, and

thus the superchannel symbol probability of error increase,

more than offsets the large error correcting ability of the

outer code, These curves also show in some cases that it

may be desirable to design the outer decoder to correct less

than the optimum number of correctable errors,

tem would require a larger E /N

probability of error, but the decoder would be faster and

easier to implement.

Such a sys-

ratio to achieve a specified b o

Figures 2.2.5 through 2.2.8 summarize the performance

of this concatenated coding system for the four convolutional

inner codes, qrarious alphabet sizes, and near optimum outer

code error correcting ability.

-20-

2.4 * 2.6 2.8 3.0 3.2 3.4 3.6 3.8 - va AadB -
Summary of Concatenated Coding Performance w i t h
a K=7, R=1/2 Inner Code.

Figure 2.2.5.

-21-

10

10-

10-

.

A a

10-

10-

10-

Figure 2.2.6. Summary of Concatenated Coding Perfopance
wi th a K=8, R=1/2 Inner Code and a 2 -Symbol
E-Error-Cor, xting Outer Code.

-22-

.

n a

4

Figure 2.2.7. Summary of Concatenated Coding Performance
with a K=8, R=1/3 Inner Code and a ZJ-Symb0l
E-Error-Correcting Outer Code.

- Eb/wo in’& .”
Figure 2.2.8. Summary of Concatenated Coding Performame with

a K=8, R=1/7 Inner Code and a 2J-Symbol E-Error-
Correcting Outer Code.

-24-

2 . 3 Implementation Procedure

A t data rates up t o 100 Kbps, hardware implementation

of c o n s t r a i n t l ength 7 and 8 V i t e r b i decoders is r e l a t i v e l y

s t ra ight forward . LINKABIT has impleK,ented a K=7, R=1/2

V i t e r b i decodepus ing only 85 I C ' s and the implementation of

K=8 V i t e r b i decoders i s documented i n References 8 and 9.

So most of t h e system design here is concerned w i t h t h e ou te r

coder-decoder and t h e i n t e r l e a v i n g buf fers . For t h e present

purpose, the inner coder-decoder can be regarded as par t of

the channel. The inner code rate and c o n s t r a i n t l ength have

v i r t u a l l y no effect on t h e o u t e r code des ign , except t o t h e

s m a l l e x t e n t t h a t longer c o n s t r a i n t l engths cause longer er-

ror b u r s t s and hence r e q u i r e longer in te r leaving .

The basic o u t e r code parameters are summarized i n

t h e code s t r u c t u r e diagram of Figure 2.3.1. Each 0.f t h e I

rows i n t h i s a r r a y r ep resen t s a R-S code word of aJ- l , J -b i t

symbols followed by a J -b i t segment of a synchronizat ion

sequence. This assumes, of course, t h a t t h e data t o be t r ans -

mi t ted can be in t e r rup ted pe r iod ica l ly for t h e i n s e r t i o n of

t h e (2 E + l) J I p a r i t y and synchronizat ion b i t s . This w i l l be

t h e caSe , for example, when several use r s are time-division

multiplexed together . I is t h e degree of i n t e r l eav ing ,

chosen s u f f i c i e n t l y long t o ensure t h e independence of suc-

cess ive hor izonta l R-S symbols, E i s t h e guaranteed number

of correctable R-S symbol errors, and 2E is t h e requi red

* It is est imated t h a t a K=8, R=1/3 V i t e r b i decoder can be
implemented for data rates up t o 100 Kbps with 150 TTL IC's.

-25-

a

-26-

number of parity checks. It is assumed that the data is

presented to the encoder in blocks of IJ(2J-1-2E) information

bits followed by a period where the 2EIJ parity bits and

the IJ-bit synchronization sequence can be inserted. The

encoded bits are read out of the array in blocks of J bits

(one R-S symbol) one column at a time and fed to the inner

convolutional encoder.

Code synchronization is obtained using the IJ-bit

synchronization sequence of Figure 2.3.1 and the synchron-

ization ability of the Viterbi decoder. The Viterbi decoder

provides inner code node synchronization and phase ambiguity

resolution as described in Reference 8. Then the IJ-bit

sequence of superchannel symbols is used to obtain code

array, and thus R-S symbol, synchronization. However, due

to the bursty nature of the superchannel, several code ar-

rays may have to be examined to obtain the code array syn-

chronization.

2.3.1 Encoder and Interleaver Design

The encoding and interleaving operations can be

accomplished as shown symbolically in Figure 2.3.2. This

basic encoder is the most efficient for a cyclic code with

2E parity checks when 2 E d 1 - 2 E (see Figure 6 . 5 . 5 of

Reference 10). The double lines represent J-bit signal

flow and the additions and multiplications are over GF(2) .

The generator polynomial is

J

2E-1
+g2E-1D g(D) = go+gl D+ ... (2.3.1)

w

ia
0)
rl
k
Q)
4J c
H

-28-

J where the coefficients, gi, are from GF(2) . In particular,

if the field is generated by a primitive element 01 and a ,

a , a , ..., a are roots of the code word polynomial, then 2 3 2E

2E
g(D) = ll (Pai)

i=l
(2.3.2)

We will restrict our attention to this class of R-S codes

throughout this report.

In an actual implementation the input and output

are a sequence of binary symbols, so a serial-to-parallel

operation must be performed at the input to the parity

computation section and a parallel-to-serial operation

must be performed before the outputs are fed to the con-

volutional encoder. A description of a hardware imple-

mentation.of the encoder and interleaver is given in a

later section. The important point is that the entire

code array of Figure 2.3.1 does not have to be stored,

only the 2EIJ parity bits need to be stored.

2.3.2 Unscrambler and Decoder Storaae Implementation

The major storage requirement in this concatenated

coding scheme is in the receiver unscrambler where the

sequence of received R-S symbols must be grouped into R-S

words and the decoded R-S symbols must be arranged so that

they are presented to the data sink in the proper sequence.

Figure 2.3.3 illustrates a method of implementing this un-

scrambling operation. This implementation operates as follows.

-2 9-

Inputs '

from Con-
volutional
Decoder

..

\ ' 0

c

/

P

u
' To

Data
Sink

Figure 2.3.3. Unscrambler Implementation.

-30-

The first received symbol gdes to the first register in the

upper set of registers, the second recerved symbol to the

second rzgister, etc., until the Ith symbol is stored in thr

Ith register.

first register and ths procedure is continued until the

registers are filled. Referring to the code array cf

Figure 2.3.1, Lt can be seen that this procedure puts the

first I R-S words in the upper I registers. When these

registers are filled, all of the switchv are changcl to

their other position and the input symbols are shifted intc

the lower set. of registers. Meanwhile the words in the

uppsr register are shifted into the R-S decoder in the

end-around manner shown and the corrected symbols are shif’ed

back into the I register. After all the s h i f t s have been

completed., these registers contain a corrected version of.

the original I words. Then when the lower registers are

filled, the positions of the switches are changed again and

the words in the lower registers are shifted through the

R-S decoder. The inccming symbols are shifted into the

upper registers and the symbols shifted cut are the decoded

properly sequenced symbols.

Then the (I+1) th symbol is shifted into the

th

This implemcntzkion has the advantage that the R-S

decoder is independent cf the interleaver. Other interleaving

procedures could reduce the storage nearly by half, but at the

cost of more complex control and staggered access to the R-S

decoder. Investigation of these procedures has shown them

to be less cost effective than the present one.

-31-

2.3.3 - Reed-Solomon Eecoding Procedure

A R-S decoder can be implemented i n f o u r s t e p s :

1.

L .

3.

4 .

C a l c u l a t e t h e syndromes fyom t h e r ece ived

sequence .
Use t h e Berlekarnp Algorithm t o f i n d t h e error

locator polynomial CI (D) .
U s e a Chien Search t o f i n d t h e roots and hence

t h e l o c a t i o n of t h e errors.

Find t h e va lues of t h e errors.

The rece ived word from t he output. of t h e i n n e r

decoder w i l l be denoted
J 2 -2

(2.3.3)
n=O

J t h l < i < 2 - - -1, r e p r e s e n t s t h e i rece ived symboi. J wlicre y

If a i.S a p r i m i t i v e element which g e n e r a t e s t h e f i e l d , t hen
2 -1-i,

t h e sy2dromes can be c a l c u l a t e d by

. . .+yo = ((Y N - p l+i +YN+ l+i +,,_,)a l+i

(2 .3 .4)

J where N i s t h e s z m b o l b lock l e n g t h of 2 -1. Thus each syn-

drome can be c a l c u l a t e d by adding each success ive rece ived

R-S symbol i n t o an i n i t i a l l y empty r e g i s t e r , mu l t ip ly ing

-32-

the sum by and returning the result to tk register

awaiting the next received symbol. Figure 2 . 3 . 4 illustrates

this procedure for the i-th syndrone.

The Berlekamp Iterative Algorithm for computing the

error locator polynomial, a (D) , from the syndromes is well

documented by Berlekamp (Reference 11) and Massey (Refer-

ence 12). This algorithm is equivalent to synthesizing the

minimum length shift register, over GF(2) , to generate J

. The resulting tap coefficients are the '2E-1 s , ...,
0

coefficients of the error locator polynomial. We will use

the notation and follow the block diagram given in Refer-

ence 10, Figure 6.7 .4 .

The Chien search determines whether a given syrnbol

is in error by evaluating the polynomial

0 (D) = l+olD+. . . +aED E (2.3.5)

at all inverse values of the primitive field element a.

If

O , there is no error in the
nth symbol .
nth symbol . there is an error in the

J

E
0 = 1 + c ai (a-")i

i=l

n = 1, 2, . . . I 2 -1-2E

This search can be implemented as shmn in Figure 6.7.5 of

Reference 10.

-3 3-

* Received
Symb0.ls

th Figure 2.3.-4 Procedure for calculating the i Syndrome.

-34-

A f t e r the error loca t ions have been located with

the Chien search, the error values must be ca lculated.

If less than or equal to E errors have occurred, the error

values are given by the formula (Reference 10)

E v = - , n=nlt n2, ..., n
(J O (a-") n

(2 .3 .6)

where ni i s the loca t ion of the i - t h error

(2.3.7)

and

-35-

2.4 Part Software and Part Hardware Decoder Implementation

Several parts of the concatenated decoder are ideally

suited to hardware implementation. As noted previously, the

hardware intplementation of constraint length 7 and 8 Viterbi

decoders is relatively straightforward at speeds of less than

100 Kbps. Also, the unscrambler of Figure 2.3.3 can be easily

implemented in hardware, but it would require a large amount

of storage to implement in software. So these operations

should clearly be done in hardware.

The R-S decoder can be efficiently implemented entirely

in hardware or in part hardware and part software.

efficient implementation will depend on the required speed and

the code parameters.

The most

Since the performance curves indicate that high rate

R-S codes should be used, the slowest parts of the R-S decod-

ing are steps 1 and 3 which have to be performed for each re-

ceived symboi. This indicates that these steps should be per-

fomred in hardware. However, the interfacing problem in going

from a software step 2 to a hardware step 3 and then back to

a software step 4 may make it desirable to perform step 3 in

software also.

To estimate the speeds of these three steps in the R-S

decoder, we wrote a camputer program to perform these steps.

One of the problems in writing such a program is to find

efficient ways of storing, adding, and multiplying field ele-

ments. Field elements over GF(2) can be represented as 3

-36-

powers of a primitive field element a or as (J-1)- degree

polynomials over GF(2). In this program we represented the

field elements by J-bit integers with the bits corresponding

to the coefficients in their polynomial representation. Field

addition is accomplished with a bit-by-bit exclusive-OR operation.

Field multiplication and division are performed using

field log and anti-log tables. The log table lists the corres-

ponding power of a for the integer representations of the

2 -1 non-zero field elements and the anti-log table lists the J

integer field element reprcsentations for the powers of a.

With these tables multiplication/division of two non-zero field

elements is accomplished by adding/subtracting their logs

modulo (2%) and looking up the resultant in the anti-log table.

Appendix A gives a listing of a Fortran and an assembly

language version of this program. The decoding speeds of the

various steps in the assembly language program are given in

Table 2.4.1 for two sets of R-S code parameters.

These times are for the LINKABIT, Digital Scientific

META-4 Computer with a one microsecond core memory cycle.

Each time is based on the time to decode three arbitrarily

chosen sets of E error locations and values. For the cases

timed there was less than a 3% variation in these times.

Table 2.4.1 lists the largest of the three times.

This table shows that, at least for the two R-S

decoders timed, a serial software implementation of steps

-37-

I u2
O X
B u

0

9(
Q)
4J
VI

-38-

2, 3 , and 4 is too slow. If the Chien search (step 3) is

performed in hardware and two minicomputers are used for

steps 2 and 4, the decoding speed is limited by the speed

of the Berlekamp Algorithm (step 2) . Table 2.4.1 indicates

that such an implementation would be satisfactory with lower

speed requirements or fo r codes with smaller guaranteed

error-correcting abilities.

This'program could be speeded up by perhaps as much

as a factor of 10 by using micro-programming techniques.

If this were done, steps 2, 3 , and 4 of the Berlekamp

Algorithm could probably be serially implemented at up to

100 Kbps for the 2 -symbol 8-error-correcting code. How- 7

ever, a hardware implementation appears desirable for the

more pwerful 2 -symbol 16-error-correcting code. 8

-3 9-

2.5 Vardware Implementation

The present discussion on the hardware implementation
8 will be limited to a system with a 2 -symbol* 16-error-correc-

ting R-S code and an interleaver length of 16. In section 2 . 2

it was shown that for this alphabet size and desired range of

error probabilities, 16 is the optimum number of correctable

errors. The computer simulation also showed that in this case

an interleaving length of 16 was sufficient for probabilities

of error down to Here we will show that this system can

be hardware implemented at a reasonable cost. The design

principles are the same for systems with different high rate,

low speed R-S decoders.

First, we discuss the hardware implementation of some

of the basic field operations. Then we present an outline

of a hardware implementation with an estimate of the number

of integrated circuit chips required to accomplish the opera-

tions.

2.5.1 Hardware ImDlementation of Field OPerations
~~~~ ~ ~ ~~~ ~~ ~ 

8 As in the software implementation, let the GF(2 ) field 

elements be represented by polynomials of degree less than 

8 in CY. That is, a field element Y is represented as 

* This is a particularly convenient field s i z e  since then 
the field elements can be stored in 8-bit shift regis- 
ters 

-4 0- 



7 
I * =  C yi a i ( 2 . 5 . 1 )  

i=O 

where the Yi coefficients are binary numbers. 

order to obtain specific circuits for performing field 

multiplication, let the GF(2 ) field be generated by a 

field element wwith a primitive polynomial 

Also ,  in 

8 

M ( D )  = 1 + D2 + D3 + D 4  + De ( 2 . 5 . 2 )  

The only criterion used in selecting this primitive poly- 

nomial is that it have minimum weight which in this case 

is 5 .  

One method of multiplying two non-zero field elements 

is to look up their logarithms in a log table, add the logs 

modulo 255,  and look up the result in an anti-log table, 

Each log and anti-log table look-up can be implemented 

with a 256 x 8 read-only memory (ROM) and the addition can 

be implemented with two chips, In general, to multiply two 

arbitrary field elements a test would have to be made to 

determine if either were zero and, if this were the case, 

the output would be set to zero. Thus, excluding control 

circuitry, 7 chips are required*. 

*This is reduced when a variable element is multiplied by a 
fixed element (such as in polynomial evaluation where the 
fixed element is a polynomial coefficient) since then we can 
simply store the logarithm of the fixed element rather than 
the element itself, thus avoiding one ROM, and if the f'xed 
element is non-zero, one zero test chip. 

-41- 



Another method (Reference 11) of mul t ip ly ing  t w o  

f i e l d  elements,  U and V, i s  i l l u s t r a t e d  i n  Figure 2.5.1. 

I n i t i a l l y  t h e  two f i e l d  elements t o  be m u l t i p l i e d  are s t o r e d  

i n  t h e  U and V r e g i s t e r s  and t h e  2 r e g i s t e r  is set  t o  zero. 

The U regis ter  i s  wired t o  mul t ip ly  by a ,  t h e  V register i s  

a s t o r a g e  register which can be s h i f t e d  t o  t h e  r i g h t ,  and 

Z is an accumulator r e g i s t e r .  The m u l t i p l i e r  operates as 

fol lows.  Depending on t h e  lowest  b i t  of V, U is e i t h e r  

added'or no t  added i n t o  2. Then t h e  U and V r e g i s t e r s  are 

s h i f t e d  and t h e  process  i s  repeated. A f t e r  8 s t e p s  2 con- 

t a i n s  
7 

, t h e  d e s i r e d  product.  E 
Figure  2.5.2 g i v e s  an implementation of t h i s  f i e l d  

m u l t i p l i c a t i o n  procedure.  I n  t h i s  and the  proceeding imple- 

mentation diagrams, L denotes  l o w ,  H high,  and X i r r e l e v a n t .  

Excluding c o n t r o l  c i r c u i t r y ,  t h i s  implementation r e q u i r e s '  8 

ch ips .  However, t h e  c h i p s  r equ i r ed  here  are less c o s t l y  

than  those  i n  t h e  prev ious  implementation. 

.The best way of ob ta in ing  t h e  i n v e r s e  of a f i e l d  ele- 

ment is t o  look up t h e  answer i n  a table con ta in ing  t h e  2 -1 8 

inverses. This  can be implemented wi th  one 256 x 8 ROM. 

-42- 



. I 

4 

I I 
VI 

fi 

. 

4 
f 
k 
a 
L) 

-43- 



k 
3 .  
Q J  

U 0 

4 
k 

-44- 



2.5.2 Hardware Encoder and Interleaver Design 

In section 2.3.1 we described the generel procedure 

for implementing the encoder and interleaver. Figure 2.5.3 

gives an outline of a hardware implementation of this pro- 

cedure. Random-access memories (RAM'S) provide the parity 

symbol storage and a read-only memory (ROM) provides the 

storage for the logs of the generator polynmial coefficients. 

The main difference between this implementation and the pro- 

cedure shown in Figure 2.3.2 is that here the multiplications 

are performed in series instead of in parallel as indicated 

in Section 2.3,1, That is, for each input symbol, 32 cycles 

through this circuitry are required to update all of the 

parity symbols for that R-S word, Then the RAM selects the 

next set of 32 parity symbols and the same proceduze is re- 

peated for the next input symbol. This serial computation 

procedure, of course, takes longer than the parallel procedure, 

but it is fast enough to obtain the required coding speeds 

and it has far fewer parts. 

Above each block in this diagram is an estimate of 

the number of TTL chips required to accomplish the operation. 

The composite RAM shown reqliires fcur 1024 x 1 RAM chips and 

must be clockeci twice to obtain the desired 8-bit output. 

The field multiplication is performed using the logarithm& 

procedure described in the previous section. Howtver, the 

complexity of this multiplier is reduced a little by stor- 

ing the logarithms of the gi coefficients instead of their 

polynomial representations. If any coefficient is zero, 

-4 5- 



A 

rl 
Y 

i 
I 

I -  

h 4 F 
- i P P  

I 
I 
I 
I 
I 
1 
.i 
I 
I 
I 
I 
I 
I 

t t  
4x9 

k 
0 

Q) 
4 
k 
0)  
JJ c n 
d 

s 

9 
k 
Q) 
b 
0 .o c w 

E 
u) 

-46- 



THIS PAGE INTENTIONALLY BLANK 

-47- 



the value 255 can be substituted since the largest logarithm 

is 254. The dotted lines indicate that if either multiplier 

input is zero, the output is zero. 

This diagram does not include the control or synchroni- 

zation circuitry. It is estimated that 8 and 4 chips, respec- 

tively, are required to accomplish these operations. 

-48- 



2.5 .3  Synchronization Implementation 

As described in Section 2.3, the Viterbi decoder 

provides inner code synchronization and phase ambiguity 

resolution and the IJ = 128 bit sequence, consisting of 

16 superchannel symbols, is used to obtain block code array 

synchronization. At the moderate data rates required here, 

the code array synchronization can be implemented with a 

simple correlatim detector. That is, for each received 

superchannel bit the detector correlates the 128-bit re- 

ceived sequence, terminating at that bit, with a locally 

generated copy of the synchronization sequence and compares 

the output with a threshold to determine the starting bit 

of the code array. The most recent 128 superchannel bits 

can be stored in a RAM, the synchronization sequence can 

be geilerated with 2 chips, and the correlator,,consisting. 

of an exclusive-OR circuit and a eo-mter, can be implemented 

with a little over 2 chips. Adding a few chips for  control 

circuits, a total of about 8 chips are required. 

This, of course, requires that for each bit time 

(>  - 10 psec.) the locally generated synchronization sequence 

be shifted and modulo-2 added to the stored most recently 

received 128 bits. Thus, the synchronization sequence nust 

be shifted at a speed of up to 12.8MHz, which is well within 

the capabilities of the TTL logic. 

-49- 



2.5.4 Hardware Unscrambler Implementation 

For t h e  5=8, I = 1 6  sys tem being considered,  t h e  un- 

scrambler of Figure 2.3.3 r equ i r e s  216= 65,536 b i t s  of 

s torage .  The best  way of implementing t h i s  is  t o  use 1 6  

4096 x 1 MOS RAM'S. Dynamic MOS s h i f t  r e g i s t e r s  could a lso 

be used, b u t  they would have t o  be r e c i r c u l a t e d  a t  t h e  lower 

data rates. Using t h e  MOS RAM'S, 1 6  ch ips  are requi red  for  

the s to rage  requirer i ients  and i t  is estimated t h a t  an addi- 

t i o n a l  1 4  ch ips  are required f o r  t h e  con t ro l  and r a t h e r  

formidable addressing c i r c u i t r y .  Thus a t o t a l  of 30 ch ips  

are required.  

2.5.5 Hardware Reed-Solomon Decoder Design 

A ske tch  of t h e  o v e r a l l  des ign  of a R-S decoder i s  

shown i n  F igure  2.5.4.  Typica l ly  t h e  decoder w i l l  be com- 

put ing  t h e  syndromes for one word while  t h e  remaining de- 

coding s t e p s  are performed f o r  the previous word. The 

Chien sea rche r  checks each symbol t o  see i f  an error has  

occurred i n  t h e  symbol about t o  be s h i f t e d  o u t  o f  t h e  bu f fe r .  

I f  so, the error value i s  computed and t h e  symbol is  corrected. 

A t iming diagram of t h e  R-S decoding oreration is given 

i n  Figure 2.5.5. The l i n e s  i n  t h i s  f i g u r e  i n d i c a t e  t h e  rela- 

t i v e  amc;.*.'-.s of t i m e  and t h e  sequence of ope ra t ions  i n  t h e  

Reed-Solomon decoding procedure. 

-5 0- 



-- 
.a . 

3 
0 
d 
PI 
k 
0) a 
0 
0 
0) n 

-51- 



F: 
0 
-d 
4J a 
k 
fa a 
a, 
k 
PI 

d 
0 
-4 
4J 
(d 
7 
4 

El 

k 
0 
k 
c( w 
a 
d 
fa 

c 
0 
-4 
4 
fd 
3 
4 

w 
k 
0 
k 
k w 
cd 
d 
fd 
c u 
k 
Id 
Q) cn 
c 
a, 
-4 
O G  u 

9 

L 

-52- 



2.5.5.1 Syndrome Calculation 

As with the encoder implementation, the number of 

chips required to implement the syndrome calculation can 

be greatly reduced by using a serial instead of a parallel 

implementation. Figure 2.5.6 shows a serial implementation 

of this procedure. Referring to Figure 2.3.4, the counter 

of Figure 2 . 5 . 6  generates the logs of the ai elements and 

the lower RAM contains the storage for the syndromes being 

calculated. During the period immediately following the 

first received symbol of the word, the feedback is removed 

and in 32 serial steps the first term of each of the syn- 

dromes is writ.ten into the lower RAM. When the remaining 

symbols in the word are received, the feedback is used to 

modify the syndromes as shown in Figure 2.3.4. Again 32 

steps per'received symbol are required to modify all of the 

syndromes. On the last series of modifications, Le., after 

the last symbol of the word is received, the syndromes are 

also stored in the upper RAM'S for use in the other decoding 

steps . 
The estimated number of TTL chips required to implement 

the various steps and the control circuits are shown. 

2.5.5.2 Berlekamp Alaorithm Implementation 
~ ~~ ~ 

Reference 10 provides a good description of the Berle- 

kamp Iterative Algorithm. 

-he shortest length shift register which will generate the 

syndrome sequence. The resulting tap connections are the 

Basically the algorithm synthesizes 

-53- 



t t  

e 

a 

ri a 
0 

-54- .. 



c o e f f i c i e n t s  of t h e  error l o c a t o r  pclynomial .  As described 

i n  Reference 1 0  and i l l u s t r a t e d  i n  F igu re  6 . 7 . 4  o f  Reference 

1 0 ,  a t  each i t e r a t i o n  t h e  algorithm computes t h e  d i sc repancy ,  

between t h e  n e x t  syndrome and t h e  nex t  o u t p u t  of t h e  dn 
p r e s e n t  s h i f t  r e g i s t e r .  I f  t .h i s  d i screpancy  i s  n o t  zero, 

a nek, s e t  of tap  connec t ions  i s  gene ra t ed .  

F igu re  2.5.7 g i v e s  a s i m p l i f i e d  block diagram of t h e  

a lgo r i thm and F i g u r e s  2.5.8 and 2.5.9 o u t l i n e  &n implementa- 

t i o n  of t h e  t w o  main p x t s  of t h i s  block diagram. 

I n  F i g u r e  2.5.8 t h e  R1 RAM c o n t a i n s  t h e  preserit set 

of  s h i f t  r e g i s t e r  t a p  connec t ions  and t h e  dn rvis ter  accsmu- 

l a tes  t h e  terms of t h e  n e x t  d i sc repancy  as i n d i c a t e d .  

The diagram of F igu re  2.5.9 i l l u s t r a t e s  t h e  o p e r a t i o n  

of t h e  main processor i n  t h e  n o t a t i o g  of F igu re  6 . 7 . 4  of 

Reference 1 0 .  A t  each  i t e r a t i o n  t h i s  p rocessc -  checks  t o  see 

i f  t h e  n e x t  d i sc repancy  i s  zero. I f  it is ,  t h i s  proce.e'sor 

merely s h i f t s  t h e  words i n  t h e  R3 RAM one  address l o c a t i o n  

and i n s e r t s  a " 0 "  symbol. Ii t h e  n e x t  d i sc repancy  i s  n o t  

ze ro ,  a new set of s h i f t  r e g i s t e r  tap sequences must be 

computed. T h i s  i s  accomplished by modif iy ing  each  of t h e  

1 6  words i n  t h e  RAM'S as shown and t h e n  s h i f z i n g  t h e  words 

i n  t he  R3 RAM one address l o c a t i o n  and i n s e r t i n g  a 110'' or  

a "1" symbol, depending on t h e  p o l a r i t y  s f  n-21n. 

d #O and n22,tn,Rn and d* must be updated as i n d i c a t e d .  

A l s o  if 

n 

-55- 



. 
SET 

IX'ITIAL 
CCNDITIONS - 

PREPARE FOR AN- 
'YiPHER CYCLE 
THROUGH ALGORITHM 

Figure 2.5 .7 .  Berlekamp Algorithm Block Diagram. 

-56- 



rnin(n-l,15) 

1 rri-1 n n 
i=O 

Figure 2.5.8.  d Calculation Procedure. n 

-57- 



' 0 3 4  
C I I  0 o a o  

a 
5 

0 

W 
0 
k 

8 
4) u 
0 
& 
pc 
E 

QI c 
Y 
w 
0 

' w  w 
4.4 
t t  

P , "  



Figure 2.5.10 sketches an implementation of t h i s  

algorithm. This implementation uses  t h e  procedures out- 

l i ned  i n  Figures 2 .5 .8  and 2 . 5 . 9  and adds c i r c u i t r y  to  

implement some of the  o t h e r  operat ions.  

The dot ted  l i n e  from t h e  dn=O tester ind ica t e s  

t h a t  when dn=O, con t ro l  is s h i f t e d  t o  t h e  R3 RAM as des- 

c r ibed  i n  Figure 2.5.9.  The o t h e r  dotted l i n e s  i n d i c a t e  

t h a t ,  as before ,  when a m u l t i p l i e r  i npu t  is zero, t he  out- 

pu t  is  set t o  zero. 

-59- 



+ I 

- t  t 
CBO 

-60- 



2.5.5.3 Chien Search and Error Evaluation Preparation - 
The Chien search and error evaluation preFaration 

step stores and, when necessary, computes the coefficients 

of the A, B,  and (3) polynomials so that they can be used 

efficiently i.r the Chien search and error evaluation pro- 

cedure. 

puted with the Berlekamp Algorithm and, as shown in Equation 

The coefficients of the u polymmial, ai, are com- 

2.3.7, the coefficients of the a’ polynomial, u @ are eqcal 

for i even and zero otherwise. So this step merely to ‘i+l 
stores these coefficients so that they can be readily ac- 

cessed by the Chien search and error evaluation circuits. 

The coefficients of the A polynomial must be com- 

puted. They can be computed directly from Lie formula 

(2.3.8) or their calculation can be incorporated into the 

Berlekamp Algorithm (Reference 10). In this case, the 

direct approach appears to be less complex to implement. 

Figure 2.5.11 gives an outline of an implementation using 

this approach. This implementation accumulates the sum 

defining each coefficient in the temporary Ai storage 

register and then stores the result in the Ai RAM. 



I 
(II 

I 

f 
f 
c 

k 
0 

W t: 
'b 
8 
E 
Y 
Q) 
v) 

-62- 



2.5.5.4 Chien Search and Frror Evaluation 

As described in section 2.3.3 the Chien search 

determines whether a giveu symbol is in error by computing 

a(cr-”) . 
said to be correct. 

is said to have occurred in that symbol. 

If this quantity is nonzero, the nth symbol is 

Otherwise an error of value A(cr-”)/a’ (aon) 

Figure 2.5.12 gives an implementation of this pro- 

cedure. This implementation performs the Chien search and 

evaluates the A and 0’ polynomials in parallel, first for 

n = N - 1 ,  then for n = N-2, and so forth, where N = 2 -1=255. J 

In the first step the circuitry accumulates 

15 

i=O 
aia (N-1) 

i+l 

15 

and 
, \ 15 

’ i  a a ’(a - (N-1 )  ) = C 
i=O ui 

in the a, A, and a’ storage registers, respectively. Then 

the NOR gate checks to see if the first received symbol, 

1 - (N-1) is correct. That is, it checks to see if a(u yN-l 
is nonzero. If so, the output AND gate produces a sequence 

of 8 zero bits. If the NOR gate output is high, an error is 

-63- 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

CI 

d 
Y 

rl 
Y 

T 
8 
H 

3 
W 
H 
Irc 

t 

I t 

I 
L 

v) 
r4 

1 pv. b , 

1 
4 

b 
a 
1 

3 

-64- 



indicated. 

as shown and this error sequexe is selected as the output. 

In this case A(a’(N-l))/~’(a-(N-”) is formed 

At the kth step this implementation evaluates the 

a,  A, and a 0  polynomials at a -(N-k) , checks to see if the 

kth received spbol is in error, computes the value of 

the error if there is one, and outputs an estimate of the 

superchannel bit error sequence corresponding to the k 

received symbol. 

th 

-65- 



2.5.6 Hardware Impleinentation Summary 

Table 2.5.1 summarizes the number of chips require2 

to hardware implement the various operations in this con- 

catenated coding system. This table shGws that most of 

this system can be implemented wLth TTL logic. MOS chips 

are used only in the unscrambler and in t h e  delay line 

storage during R-S decoding, where large amounts of storage 

are required. A total of 17, 4096 x 1 MUS RAM'S are used 

for these storage purposes. 

The table shows that the decoder for this concatenatsd 

coding system can be implemented with only a little over 

twice the number of chips as the basic Viterbi decoder. 

That is, it requires a few more chips than a K = 9, R = 1/3 

Viterbi decoder. However, this concatenated coding system 

only requires 1.93 and 2.18 dB tc, achieve bit error prob- 

abilities of lom4 and lo-', respectively, while the K = 9, 

R = 1/3 Viterbi decoder system requires auout 2 . 6  and 4 . 2  dB. 

To obtain the same performance as this concatenated coding 

system, a considerably longer and exponentidly Rore complex 

Vite.cbi decoder system would be required. 

-66- 



d @ c C  
m m 

0 0 0  

4 C D e  
m m 

k 
Q) a 
0 u 
F w 
d 
rp 
U 
0 cc 

0 0 ~ ~ 0 0 0 0 s - i  I- e 
rl rl s-i 

0 c P 
h c 
UI ! 2 0 
k 
k 

c 
0 
4 u 
(d 
3 
4 

w 
k 
0 
k 
k 
(11 

5 c ca 
c 
0 
k 
10 
Q, 
v1 

b 

5 

k 

3 0 

4) 
CI 
4 
Q 
3 

-67- 



3.0 Hybrid Bootstrap Decodincr 

Performance r e s u l t s  f o r  hybrid boots t rap  decoding (16,17,18) 

based on extensive s imula t ions  by :;orman are presented i n  

t w o  papers (Refs. 14, 15). The design considered i n  Section 

3.2 follows these  papers very c lose ly ,  s ince  a l t e r n a t e  

schemes have no t  been adequately tested. W e  are p a r t i c u l z r l y  

in t e re s t ed  i n  t h e  rate 1/3, one group, sof t -decis ion decoder 

without mul t ip le  processing, which achieves performance com- 

parable to  t h a t  of concatenated coding. Performance is re- 

viewed i n  Sect ion 3.1 and an implementation based on MECL 

10,000 logic i s  presented i n  Sect ion 3.2. Suggestions and 

comments on o the r  approaches are contained i n  Sect ion 3.3. 

A c a r e f u l  comparison and eva lua t ion  of hybrid and concatenated 

coding is  contained i n  Sect ion 4. 

3.1 Performance R e s u l t s  

I n  hybrid decoding, t h e  p r inc ipa l  source of f a i l u r e  

is block erasure due t o  inadequate time to  decode. Undetected 

errors also occur. An undetected output  b i t  error rate of 

2.5 x loo6 near  R~~~~ is cited i n  Ref. 14 f o r  t h e  rate 1/2 

code. It is an t i c ipa t ed ,  however, t h a t  with proper choice 

of parameters and during opera t ion  a t  rates below Rcomp, 

t h a t  is, w i t h  Eb/No of 1.5 d B  or higher ,  t h e  undetected error 

rate w i l l  be s i g n i f i c a n t l y  lower than low6 and not  a s ign i f -  

i c a n t  cause of system degradation. 

-68- 



An erasure occurs whenever t h e  number of computations 

required to  decode a block exceeds t h e  number of computations 

t h a t  can be performed by t h e  decoder during t h e  time a l lo t ted  

for  decoding t h e  block. I n  real- t ime decoding, t h i s  number 

is  approximately equal t o  the computational speed of t h e  

decoder times the  time required t o  t ransmi t  one block. 

Buffering ex te rna l  t o  the decoder w i l l  permit add i t iona l  

time t o  be devoted t o  d i f f i c u l t  blocks, beyond t h a t  requi red  

t o  t ransmi t  t h e  block, bu t  t h i s  effect i s  not  major un le s s  

very large buf fe r s  (and de lays ) ,  or  o f f - l i n e  processing, 

is provided. 

F ig .3 . l . l i s  an  ex t rapola t ion  of t h e  r e s u l t s  of Fig. 1 

cf P e f .  15, the  normalized computational d i s t r i b u t i o n  for  a 

rate 1/3, 7-track boots t rap  decoder. These curves may be 

used to  approximate system performance as follows. A de- 

coder capable of performing D computations per  second can 

perform LT = D x 3000/R computations during t h e  time re- 

quired t o  t ransmi t  a block of 3000 b i t s  a t  an information 

b i t  rate of R b i t s  per second. The normalized t o t a l  number 

of computations is obtained by div id ing  LT by t h e  number of 

information b i t s ,  y ie ld ing  

p = LT/3000 = D/R. 

Thus, t h e  normalized to ta l  number of computations per block 

is  j u s t  t h e  computational speed f a c t o r ,  p, defined as t h e  

r a t io  of t h e  computational r a t e  of t h e  decoder t o  t h e  infor -  

mation b i t  rate. For d decoder capable of 15  megacomputations 

-6 9- 



CI 

cc 
A I  

a 
6 
0 
0 

A 
0 
k 
PI 

v 

100 1000 10' 
Normalized Computations, T 

D i s t r i b u t i o n s ,  Octal Hybrid Figure 3.1.1 Extrapolated 
Sequent ia l  Decoder. 

-7 0- 



per second (ElCPS) p = 150 a t  a rate of 1 0 0  Kbps and p = 1500 

a t  a da ta  ra te  of 19 Kbps. 

cate an  e rasure  ra te  of 7 x 

2.2 dB a t  1 0 0  Kbps and an e rasure  rate of 3 x l o o 4  a t  an 

J 
The curves of F i g . X l . l t h e n  ind i -  

a t  an E ~ / N ~  of approximately 

Eb/No of approximately 1.7 dB a t  1 0  Kbps. 

Curves of e rasure  vs.Eb/No a t  data rates of 10 and 

1 0 0  Kbps assuming a 15  MCPS decoder are presented i n  Fig. 3.1.2. 

It should be noted t h a t  t hese  curves are based on r a t h e r  un- 

c e r t a i n  ex t rapola t ion  and thus  are sub jec t  t o  cons iderable  

inaccuracy. The performance of a 16 error co r rec t ing  con- 

caLenated Reed-Sclomon V i t e r b i  decoder i s  a l s o  shown i n  

Fig.3.1.2as a curve of block error p robab i l i t y  VS. Eb/No. 

The hybrid decoder opera t ing  a t  1 0  Kbps appears t o  have a 

s l i g h t  performance advantage down t o  block error or e rasure  

p r o b a b i l i t i e s  of 

coding appears to  s u f f e r  badly. I n  p a r t i c u l a r ,  a t  1 0 0  Kbps, 

hybrid decoding is  quite i n f e r i o r  for block erasure  proba- 

b i l i t ies  less than . 

A t  lower speed f a c t o r s ,  hybrid de- 

The reason f o r  t h i s  i n f e r i o r  performance i s  n o t  clear. 

Fig. 2 of R e f .  15 shows an unexplained decrease i n  Pareto 

slope,  a ,  for t h e  rate 1/3 code as Eb/No is  increased from 

2 t o  3 dB. It is  t h i s  decrease t h a t  shows up as i n f e r i o r  

hybrid decoding performance a t  1 0 0  Kbps above 2 dB. 

t h i s  i s  a bas ic  problem, a qui rk  i n  t h e  implementation, or 

over ly  ambitious ex t rapola t ion  remains t o  be explained. 

Whether 

-71- 





Figure 3.1.2 Erasure Probability for 15 MCPS Hybrid Sequential 
Decoder, Rate 1/3, Octal Channel 

-73- 



I t  is c l e a r  t h a t  there are s i g n i f i c a n t  advantages t o  

high speed f a c t o r .  The design f o r  a soft decis ion ,  ra te  1 /3  

hybrid decoder i s  discussed i n  Section 3.2. A faster compu- 

t a t i o n  ra te  does not  present ly  appear t o  be p r a c t i c a l .  

3.2 Hybrid Bootstrap SequentiaS Decoder Implementation 

A design of a hybxiri sequent ia l  drjcaier, using t h e  

algorithm presented i n  Ref. 14, i.s descr ibed i n  t h i s  sec t ion .  

A block diagram of t h e  decoder is  shown i n  Fig. 3.2.1. When 

t h e  decoder completes t h e  decoding of a block, t h e  received 

symbols for  t h e  next  block are loaded i n t o  t h e  decoder memory 

while t he  decoded data from t h e  previous block is being read 

out .  Simultaneous w i t h  received symbols being loaded, t h e  

state track is  generated and loaded i n t o  t h e  decoder memory. 

Three state b i t s  are generated from t h e  received 

symbols f o r  each of t h e  512 words i n  t h e  block. The s ta te  

b i t s  are computed as foliows: 

is equal t o  t h e  even p a r i t y  of t h e  s ign  b i t s  of received 

symbol one f o r  each of t h e  seven tracks i n  word n; t h e  second 

state b i t  i s  equal t o  t h e  even p a r i t y  of t h e  s ign  b i t s  for 

received symbol t w o ,  etc. Three more state bits i n  word n 

are t h e  binary representa t ion  of KLEFT, t h e  number of t r a c k s  

t ha t  have not  y e t  decoded past  word n. When t h e  memory i s  

f i r s t  loaded, KLEFT is  set equal t o  seven i n  a l l  512 words. 

The f i n a l  b i t  of t h e  s ta te ,  r e f e r r e d  t o  as  the a l t e r n a t e  

branch s t a t e  b i t ,  is  p a r t i c u l a r  t o  t h e  t r a c k  present ly  

being decoded and is set equal t o  one on a forward move 

t h e  f irst  state b i t  of word n 



J 

1 

-i- 

I 

-75- 



along the best branch from a node, and t o  0 on a forward 

move on t h e  a l t e r n a t e  branch. 

3 . 2 . 1 Decoder I?Ieinory Organization 

A t o t a l  memory s i z e  of 512 words i s  requi red .  The 

t o t a l  memory is  d iv ided  i n t o  three sec t ions ;  one fo r  re- 

ceived symbol storage, one f o r  information b i t  s to rage ,  and 

one for decoder s t a t e  storage. The received symbol and t h e  

information b i t  s e c t i o n s  are divided i n t o  seven independent 

t r ackb .  Each track has i t s  owr. address counter .  The re- 

ceived symbol and information b i t  storage for a given t rack 

share  t h e  same address counter ,  The s ta te  memory i s  ad- 

dressed by an address counter  which is loaded from the 

t rack address counter  of t h e  track c u r r e n t l y  being decoded, 

The received symbol s to rage  r e q u i r e s  a n ine-b i t  word 
. .  

for each track fo r  a t o t a l  of 512 x 7 x 9 = 32,256 b i t s  of 

s torage.  

per t r a c k  fo r  a t o t a l  of 512 x 7 = 3 , 5 8 4  b i t s .  The s t a t e  

memory has only  a s i n g l e  track. A seven-bit  word is re- 

quired for a to ta l  of 3 , 5 8 4  b i t s ,  Thus, t h e  to ta l  s to rage  

requi red  i s  39,424 b i t s .  

mately 50-60 ns. It appenxa t h a t  these requirements can 

best be m e t  wi th  t h e  F a i r c u l d  95410, 256-bit ECL memory. 

A total of 154 of these devices  are requi red  t o  build this 

memory . 

The information b i t  s to rage  r e q u i r e s  on ly  one b i t  

T’w :ycle time must be approxi- 

-7 6- 



While the decoder is computing t h e  p re sen t  node, 

t h e  memory reads  o u t  t h e  received symbols and s ta te  b i t s  

fo r  t h e  next computation. Since t h e  decoder may move ei ther  

forward o r  backward, t h e  received symwls and s ta te  b i t s  

f o r  both t h e  next  node and t h e  previous node must be pro- 

vided. 

3.2 . 2 Decoding Loqic 

Since t h e  decoding l o g i c  speed determines t h e  

o v e r a l l  computation r a t e ,  it has been worked o u t  i n  some 

de ta i l .  A block diagram of t h e  decoding logic i s  shown 

i n  Fig. 3.2.2. The decoding l o g i c  has  t w o  modes, t h e  look- 

forward mode and t h e  look-back mode. The decoder is i n  t h e  

look-forward mo6e i f  t h e  p resen t  node w a s  a r r i v e d  a t  by a 

forward s tep .  Otherwise, t h e  decoder i s  i n  t h e  look-back 

mode. 

The node metric, o r  MT, r e g i s t e r  con ta ins  t h e  cumula- 

t i v e  metric minus t h e  cumulative threshold  fo r  t':e p re sen t  

node. A 1 6 - 5 i t  r e g i s t e r  f o r  use wi th  symbol metric va lues  

quantized t o  12 b i t s  i s  assumed, based on s imula t ions  performed 

by L. Hofman and summarized i n  Fig.  3.2.3. The 2 curves  en- 

compass a range of choices  of metric quan t i za t ion  and of KLEFT. 

Hofman notes  t h a t ,  by ex t r apo la t ion ,  a 16-bi t  MT r e g i s t e r  can 

be expected t o  overflow 

whereas a 14-bi t  r e g i s t e r  could be expected t o  overflow every 

5 x 1 0  blocks when used wi th  12-b i t  symbol metrics. The 

choice of 1 6  b i t s  t hus  appears to  be reasonable.  Symbol metric 

quant iza t ion  i s  discussed i n  connection wi th  Fig.  3 . 2 . 4 .  

about  once every 5 x l .033  blocks,  

4 

-77- 



-78- 



10- 

10-1 

10- 3 

10- 

10- 5 

0 5 10 15 20 25 30 

\\ 

Distribution of maximum difference 

between metric and threshold for 

each decoder s t a r t  (unscaled). 

.Ne.tric = KLEFT = 

1000 blocks, 22027 starts 
.9 b i t s  1,2:3,7,7,7,7 

Q 

14+ b i t 8 ,  Full 
1000 blocks, 19866 starts 

%;N6 = 1.977 dB @=0.13) 

I 
b I I I I I 1 1 I I t I \  I 

0 5 10 15 * 20 25 b 30 

Fig&@ 3.2.3.  Complementary Distribution Function for MT for 
rate 1/2, inner code, 7-track Hybrid BOOt8trap 
Decoder. 

-799 



1 

10- 

n 
t3 
A I  

Q( 
E 
0 
0 

A 
0 .  
k 
PI 

Y 

10- 

10- 

I I 

A -  \ \ \ \  / 

\ \ \ \  RATE -1/2 BOOTSTRAP DECODER 
COHPUTATXON DISTRIBUTIONS 

(Unnormalized) 

Metric 
Scale Bits KLm Blocks 

Full fLo00 - 
14+ \ \ -  - - . \\' 2380 12 1,2,3,7#7#7 1000 

29.8 9 1,2,3,7,3,7 1000 
238. 12 1,2,3,5,5,7,7 1000 

. .  

= 1.977 dB (~0.13) Eb'NO 

I I I I-I I I r  I I I I I I d  I 

10' lo5 lo6- 10'' 
T-, . .  

Figure 302.4 Sensitivity of Bootstrap Decoder Computations to Quantization 
of Metrics and of KCEFT. 

-8 0- 



The MT r e g i s t e r  is  set t o  zero when s t a r t i n g  or 

resuming t h e  decoding of a track. When i n  the  forward 

mode, t h e  metric calculator simultaneously computes t h e  
1 

metric for t h e  t w o  successor nodes t o  t h e  present  node 

by adding t h e  three symbol metrics for  each branch t o  MT. 

The best of t h e  t w o  inetrics is tested f o r  threshold vio- 

l a t i o n  (negative value of MT). I f  threshold is  v io la ted ,  

the decoder s t eps  back to  t h e  previous m o d e .  Otherwise, 

the decoder s t eps  forward, sets t h e  a l t e r n a t e  branch state 

bit to 1, and tests t h e  best m e t r i c  for a poss ib le  threshold 

t ightening. The m e t r i c  14T is decreased by A i f  the  previous 

metric w a s  less than A and t h e  bee2 new metric is greater 

than or equal to  A. 

i n  t h e  m e t r i c  r e g i s t e r  and t h e  decoder s t e p s  forward on t h e  

best  branch. 

The r e s u l t i n g  m e t r i c  is  then stored 

I n  t h e  back-up m d e ,  t h e  m e t r i c  of t h e  present  

branch and t h e  a l t e r n a t e  branch is ca lcu la ted  simultaneously. 

If t h e  present  m e t r i c  is  below threshold, then t h e  threshold 

is loosened by adding A t o  MT and t h e  decoder s t e p s  forward 

on t h e  best  branah. If t h i s  is  not  t h e  case, and i f  t h e  

a l t e r n a t e  branch ava i l ab le  state b i t  is  1, then t h e  metric 

of t h e  a l t e r n a t e  branch is tested for threshold v io la t ion .  

If t h e  a l t e r n a t e  branch metric i s  above threshold,  then the 

decoder s t e p s  forward t? t h e  a l t e r n a t e  branch, s e t t i n g  t h e  

a l t e r n a t e  branch .ava i lab le  state b i t  t o  0; otherwise,  t h e  

decoder s t e p s  back. 

-81- 



The branch Retrics are computed from t h e  symbol 

metrics and t h e  previous node metric. The only practical 

way of generat ing t h e  symbol metrics is  by storinc; the, 

va lues  i n  three i d e n t i c a l  look-up tables,  one for  each 

symbol. Each look-up table is composed of s i x  256-bit 

MECL 10,000 ROM% and is  addressed by three b i t s .  These 

devices  (soon t o  become available) will have access times 

of about 1 7  nanoseconds. Each symbol look-up table provides 

two sets of symbol metrics; one for  t h e  upper (0) branch and 

one for the  low2r (1) branch. Each symbol metric is stored 

t o  12-bi t  p rec is ion .  I n i t i a l  s imulat ions by Hofman i n d i c a t e  

t h a t  with appropr ia te  choice of KLEFT quant iza t ion  to 2 bi t s ,  

m e t r i c  table quant iza t ion  t o  12 b i t s  has n e g l i g i b l e  impact 

on computational requirements. A more extens ive  s imulat ion 

appears to  be indica ted ,  however, before parameter choices  

are frozen. Hofman's r e s u l t s  are presented i n  Fig.  3.2.4. 

Although obtained for  a rate 1/2 code, no d i f f e r e n c e s  are 

an t i c ipa t ed  for  a rate 1/3 code. 

I n  forward mode, t h e  t w o  branch metrics are formed 

by summing t h e  symbol metrics w i t h  t h e  conten ts ,  MT, of t h e  

node metric r e g i s t e r .  

from each o ther  t o  determine t h e  larger of t h e  two. Thresh- 

o ld  changes are obtained by adding or sub t r ac t ing  A from 

both t h e  upper and lower branch metr'cs while they are 

being compared. 

These two r e s u l t s  are then  subtracted . 

-8 2- 



I n  t h e  backward mode, t he  present  node metric i s  

determined by subt rac t ing  t h e  upper branch metric from MT, 

The a l t e r n a t e  node iaetric i s  computed by adding t h e  a l ter-  

na t e  branch metric t o  t h e  present  node metric. 

The appropr ia te  metric is  selected by a t h r e e  input  

mult iplexer  and s tored  as t h e  new value of MT i n  t h e  node 

metric r e g i s t e r .  The dec is ion  which de tern ines  t h e  b e s t  

metric also determines the  inforna t ion  b i t .  The infor -  

mation b i t s  are shicted i n t o  an encoder which d e t e m m e s  

t h e  check b i t s  fo r  t h e  next  computation. A f t e r  t h e  infor -  

mation b i t s  s h i f t  through t h e  encoder, they  are stored i n  

the  appropr ia te  track of the information b i t  memory. 

A s  t h e  decoder moves forward, t h e  s ta te  b i t s  are 

updated. *Each  check bit fron t h e  encoder i s  exclusive-OR'd 

w i t h  t h e  s ign  b i t  of t he  corresponding received symbol. 

The r e s u l t  is exclusive-OR'd with t h e  corresponding state 

p a r i t y  b i t  and stored as t h e  new state p a r i t y  b i t .  A t  t h e  

same time, t h e  quant i ty ,  KLZFT, is  decreased by one, When 

backing up, ItLEFT is increased by one and t h e  state p a r i t y  

b i t s  are changed back to  t h e i r  o r i s i n a l  condi t ion ,  

a l t e r n a t e  branch state b i t  is set to  1 or 0 ,  depending on 

whether t h e  forward move is along the best or worst branch, 

respec t ive ly .  

The 

-8 3- 



3.2.3 Track Control Logic 

The func t ion  of t h e  track con t ro l  l o g i c  i s  t o  

monitor t h e  performance of t h e  decoder and t o  switch t o  

another  track when t h e  decoder bogs down on t h e  present  

t r a c k .  The decoder's progress  on t h e  present  track i s  

monitored by a counter  which is  incremented when t h e  de- 

coder threshold  is  loosened. The counter is reset to 

zero ,when t h e  decoder t i g h t e n s  threshold. The number i n  

t h i s  counter i s  continuously compared w i t h  a stopping 

threshold ,  DSTOP. I f  t h e  threshold is violated, then  

t h e  track con t ro l  logic switches the decoder to t h e  next  

uuf in i shed  track. 

The decoder ' s  pene t ra t ion  is also monitored by an 

up/down counter which is zeroed when decoding switches 

t o  a new track. I f ,  when t h e  DSTOP threshold is  v io l a t ed ,  

t h e  decoder has penetrated far enouqfl t h a t  p rogress  has 

been made, a r e g i s t e r ,  KROUNDI is reset. Otherwise ,  

KROUND is  incremented by one. 

If KROUND becomes equal t o  t h e  number of unfinished 

tracks, then progress  is no longer being made by any of 

*the unfinished t racks .  I n  t h i s  case, the unfinished t r a c k s  

are restarted at the beginning of the block and t h e  stop- 

ping threshold, DSTOP, is loosened. 

-84- 



The stopping threshold ,  DSTOP, i s  a func t ion  of 

KLEFT and D I ,  the number of times t h e  unfinished tracks 

have been i n i t i a l i z e d .  The quant i ty ,  KLEFT, i s  s tored  i n  

t h e  state memory. The quant i ty ,  D I ,  is t h e  conten ts  of a 

2 b i t  counter,  i n i t i a l l y  zero, which is  incremented when- 

ever ail. unfinished t r a c k s  become stalled,  as determined 

from KROUND equaling KLEFT, The PI counter is reset 

whenever a new track is f in i shed ,  The stopping th re sho lds  

are stored i n  32 words of a s i n g l e  MECL 10,000 ROM ad- 

dressed by KLEFT (3  b i t s )  and D I  (2  b i t s ) .  

When the  stopping threshold ,  DSTOP, i s  v io l a t ed ,  

then t h e  t r a c k  c o n t r o l  l o g i c  stops t h e  decoding of t h e  

present  track and begins t h e  decoding of a new track. 

If KROUND equals KLEFT, a l l  unfinished t r a c k s  are stalled 

and a l l  uncoded tracks are r e i n i t i a l i z e d ,  The s imula t ions  

of R e f ,  1 4  and 1 5  assume r e s t a r t i n g  a t  t he  track origf-ns. 

However, some time and probably computations would be 

saved if r e i n i t i a l i z a t i o n  were achieved by s t a r t i n g  a t  a 

po in t  between t h e  o r i g i n  and t h e  present  node, t h a t  is ,  

by backing up a fixed d i s t ance  a f t e r  s t a l l i n g ;  

-8 5- 



When switching t o  a new t r ack ,  only those  nodes 

which l i e  t e n  nodes o r  more behind t h e  present  node are 

considered to  be "de f in i t e ly"  decoded. Since t h e  state 

has been updated t o  t h e  present  node, t h e  decoder i s  backed 

up t e n  nodes, t hus ly  r e s t o r i n g  t h e  s ta te  b i t s  of non- 

d e f i n i t e l y  decoded nodes t o  t h e i r  previous values .  To 

provide c o r r e c t  information f o r  t he  next  res tar t ,  t h e  

decoder i s  then forced forward 24 nodes, with all decoding 

opera t ions  suspended, thus  s t o r i n g  t h e  encoder conten ts  

i n  t h e  information b i t  memory. 

Track  change is  then accomplished by incrementing 

t h e  3 b i t  track poin ter  counter which selects t h e  active 

track, The track address counter of t h e  new a c t i v e  track 

is checked t o  see i f  t h i s  t r a c k  i s  completely decoded. 

If so, t h e  track poin ter  counter is incremented u n t i l  an 

unfinished t r a c k  is  found. 

Decoding of t h i s  t r a c k  is started by first loading 

t h e  encoder by forc ing  t h e  decoder t o  back up 24 nodes. 

The metric r e g i s t e r  and t h e  progress  counter  are then  re- 

set t o  zero,  The present  node then forms a "pseudo o r i g i n "  

f o r  t h e  subsequent decoding opera t ions ,  This completes 

t h e  switching process and t he  decoder is allowed to  pro- 

ceed u n t i l  t h e  stopping threshold  i s  violated again,  or  

u n t i l  t he  t r ack  i s  completely decoded. 

I n  t h e  event  t h a t  a l l  unfinished t r a c k s  are s t a l l e d ,  

then they must  be r e s t a r t e d  at t h e  beginning of t h e  block 

or  a t  intermediate  poin ts ,  But f i r s t  t h e  state must be 

-86- 



cleared of the  e f f e c t s  of t h e  unfini-shed decoders. T h i s  

is  accomplished by loading each unf in ished  track i n t o  t h e  

decoder and fo rc ing  it t o  back up a f ixed  number of nodes 

or t o  t h e  beginning of t h e  track. Decoding then resumes 

bu t  w i t h  a looser stopping threshold.  

3.2.4 Parts Count Est imat ion 

The part count necessary t o  implement t h e  decoder 

has been est imated.  The estimate is based on t h e  u s e  of 

p re sen t ly  a v a i l a b l e  ECL 10,000 and 9,500 series l o g i c  cir- 

c u i t s .  The MECL 10139 ROM or  equ iva len t  has been assumed 

t o  be available i n  t h e  near  fu tu re .  The parts count has 

been broken down as follows: 

Memory and Associated Reg i s t e r s  I 
1 hetr ic  Calcula t ion  

Metric Tes t ing  and Se lec t ion  
State Ca lcu la t ion  i Update Logic 
Track Control Logic 

Encoder 
Memory Address Reg i s t e r s  
Miscellaneous 
Externa l  Buffer 

: 

TOTAL 

170 
50 
30 

l5 I 
30 1 
30 I 50 1 

50 t 
450 I 

Table 3 .1 , l  Approximate 1.C-  Requirements fo r  
Hybrid Bootstrap Sequent ia l  Decoding. 

This  number of c i r c u i t s  can be packaged on 5-6 

c i r cu i t  boards approximately 8x8 inches i n  size. Prime 

power requirements are approximately 400 watts, assuming 

50% power supply e f f i c i e n c y ,  



3.2.5 Decoder Computation Race 

The part of the decoder that determines the maximum 

computation rate is the branch metric calculation and selec- 

tion circuitry shown in Figure 3.2.2, Note that the entire 

branch metric computation is done in one computational cycle. 

The total delay through this circuitry is approximately 

60 nanoseconds including set-up and propagation delays of 

the flip-flop registers involved. This is the basis for ‘the 

15 Megacomputations per second decoding speed forecast. . 

It is possible to speed up the process by the use of 

pipeline techniques; i .e. , by doing part of the metric calcu- 
lation on the previous computational cycle. The difficulty 

here is that whatever portion of the hardware operates on 

the previous cycle must compute branch metrics for three 

times as many nodes. This is because the present compu- 

tational cycle may step back or step forward to two different 

nodes and symbol metrics have to be provided for all three 

possibilities. 

The use of MECL I11 in the symbol metric summers was 

considered briefly anti rejected in favor of the ECL 10181 

arithmetic logic unit, It was found that only a small im- 

provement could be made in propagation delay at greatly in- 

creased chip count and cost, Actually, the increased size 

of the resulting circuit board layout would probably cancel 

the smaller propagation delay because of increased wire 

length. 

-88- 



Other Bootstrap rjecoding Techniques 

The des ign  of Sec t ion  3.2 is based on t h e  best 

understood of the b o o t s t r a p  s e q u e n t i a l  decodinq techniques.  

The basic hybrid b o o t s t r a p  decoding algorithm is  w e l l  

s u i t e d  fo r  hardware implementations,  b u t  i n i t i a l  s imu la t ion  

r e s u l t s  do n o t  i n d i c a t e  any clear performance improvement 

over concatenated convolu t iona l  - RS decoding which is 

somewhat simpler t o  implement. 

3 . 3 . 1  M u l t i p l e  Processors 

Hybrid b o o t s t r a p  decoding performance could be h- 

proved i f  t h e  speed factor of t he  s e q u e n t i a l  decoder could 

be ef fec t ive ly  increased  by factors greater than  2 without  

s i g n i f i c a n t  cost increments.  One approach w i t h  p o t e n t i a l  

promise is  u t i l i z a t i o n  of m u l t i p l e  processors.. I n i t i a l  
1 5  s imula t ions ,  d i scussed  bly Hofman and Odenwalder , 

demonstrated a r educ t ion  i n  performance. The problem 

appears t o  reside i n  t h e  communication problem zmong t h e  

p rocesso r s  and, i n  p a r t i c u l a r ,  i n  techniques  fo r  r e v i s i n g  

state information and recogniz ing  d e f i n i t e l y  decoded sec- 

t i o n s  without  in t roducing  errors. Each s e q u e n t i a l  decoder 

must be able t o  accept changes i n  branch metric assignments 

w i t h o u t  complete i n i t i a l i z a t i o n ,  without  looking,  and without  

s i g n i f i c a n t  computational i nc reases .  Fu r the r  work is i nd i -  

cated. I- 

t Sec t ion  3.3.2 was authored by Dr. F. J e l i n e k ,  a c o n s u l t a n t  
t o  LINKABIT on t h i s  study. H e  cons ide r s  a p p l i c a t i o n  of 
b o o t s t r a p  techniques  t o  Vi te rb i  (trellis) decoding with 
long c o n s t r a i n t  length codes. 

-8 9- 



3,3.2 Bootstrap T r e l l i s  Decoding 

3.3.2.1 Descript ion of Rudimentary Decoder 

L e t  K be t h e  c o n s t r a i n t  l eng th  of a convolu t iona l  

code, and l e t  t h e  c o n s t r a i n t  l eng th  of t h e  corresponding 

t runca ted  trell is  decoder be p<K ( L e , ,  t h e  t runca ted  de- 

coder has 2 ’-’ states per  l e v e l ) .  

i s  so large t h a t  t h e  p r o b a b i l i t y  of error fo r  maximum l i k e -  

lihood decoding A t h e  s ignal- to-noise  r a t io  (SNR) tsed is  

n e g l i g i b l e  compared t o  t h e  p r o b a b i l i t y  of e r r o r  r e s u l t i n g  

from t h e  scheme described below. 

We w i l l  assume t h a t  K 

The rudimentary Bootstrap T r e l l i s  decoding algori thm 

is  as follows: 

1,‘ m-1 strea3.s of b inary  data are encoded us ing  

t h e  K c o n s t r a i n t  l eng th  code, and an mth stream 

i s  created us ing  mod 2 posit ion-by-posit ion addi- 

t i o n  of the  M-1 streams, 

2, The m streams are t r ansmi t t ed  through the  

channel,  and t h e  r ece ive r  creates an  appropr i a t e  

state stream as i n  Bootst rap Sequent ia l  Decoding. 

3, A p-truncated trellis decoder i s  used t o  de- 

code t h e  f i rs t  stream, w i t h  metrics based on t h e  

coxresponding rece ived  and s ta te  stream d i g i t s ,  

To each depth of the  N-branch 

respond 2 l ikel ihoods,  the 

depth n being denoted by Ln. 

-90- 

codeword there cor- 

maximum of these at 



L e t  

so L" i s  a monotone inc reas ing  func t ion  of r!c (I, a a ,N) a 
11 

If LM - L <T tcr a l l  n ,  t h e  decoder a c c e p t s  t h e  decoded n n 
first strean h f o r m a t i o n  sequence, otherwise  it re- 

jects it (ir. f w = ,  it will stop decoding a f t e r  s m a l l e s t  

depth  n is searched f o r  which Lf: - L CT). n- 

4 .  I f  the lSt stream was accepted, .'t is rep1a;ed by 

t h e  est imated t r a n s m i t t e d  stream, t h e  s t a t e  stream i s  

accord ingly  r e c a l c u l a t e d ,  and t h e  decoder proceeds t o  

decode t h e  2nd stream as i n  s t e p  3 ,  iising a metric 

table  a p p r o p r i a t e  t o  m-1 undecoded streams , 

5.. I f  the  lSt stream was rejected, 2nd stream de- 

coding proceeds e x a c t l y  as i n  (3) w i th  no change to 

e i t h e r  metric or state stream, 

6 ,  Steps  3 through 5 e s t a b l i s h e s  a p a t t e r n  tha t  is 

adhered t o  i n  genera l :  a f t e r  every acceptance,  t h e  

staLe stream and metrics are r e c a l c u l a t e d  and de- 

coding of the ''round r c u i n "  next  stream begins.  

7 a  Decoding t e rmina te s  i n  e i t h e r  of t w o  ways: 

a) SUCCESS: a l l  m streams get f i n a l l y  accepted. 

b) FAILURE: when k streams, (kzm)  , remain un- 
decoded, R success ive  attempts at 

stream decoding end wi th  rejection. 

-91- 



3 . 3  . 2 .2  Ana Lstical Perfcxrnance Estimates 

Using simple arguments , analogous t o  t h e  r.nes appearing 
16 

i n  t h e  Bootstrap Sequen t i a l  DecoGing paper ,  it is possible 

t a  o b t a i n  bou-ds on t h e  p r o b a b i l i t y  of DECGDING FAILURE, 

P(F;. 

L e t  Ek (R)  be t h e  p-:obabili ty of undetected error 

exponent; correspcnding t o  maximum l i k e l i h o o d  decoding of t h e  

first of k streams t h a t  u t i l i z e  t h e  received as w e l l  as state 

strean d i g i t s  when t h e  convolu t iona l  rate is R (the n e t  rate 

R) . In-1 t ak ing  i n t o  account t h e  p a r i t y  stream degrada t ion  is - m 
Then 

-vEk m)) 
I - < max min [ [NAm2-pE- (R)] k I NAk2 

2ck<m - -  

I 1 [ NA,,SoPEk '"'1 I NA22 -E* (R) - > m 3 x  m a x  
3ck<m - -  

P(F) = 

(30301) 

where A& is a monotonically i n c r e a s i n g  f u n c t i o n  of t h e  nwiber 

of undecoded streams & that depends on t h e  ra te  R but varies 

n e g l i g i b l y  w i t h  1.1. From (3.3.1) it follows t h a t  

( 3 0  3 0 2)  

where estimates of both  exponents are r e a d i l y  

I n  fact, l e t  us assume t h a t  t h e  combined expurgated and 

random coding bound exponents are t h e  t r u e  exponents. 

available. 

-92- 



Then 

B if the so lut ion of R= E: ( B )  is B?' 

( 3 - 3 - 3 )  

where, for the binary input, 2b-ary output symmetrical channel, 

and binary state stream, 

Above, the channel outputs are pairs (u,v), u E (0,118 v ~ + . . , b /  I 

and t h e  inputs a r e  x (0,l). Tne transmission probability, w(u,vlx) 

is symmetric: w(u,vlx) = w(u191, vlxel) 

Furthermore, 
. k-1 

1+ (1-2p) 
(0) = 

qk-l 2 

b 

v=l 
p=c w(1,v 10) 

-93- 



Finally, 

Clearly, for (3.3.1) and (3.3.2) 

To obtain parametric relations between ELB(R) and EV@) and 

R, we may proceed as follows, Define 

Then ELB (R) = a for 

-94- 



Where 

Finally, 

I = a f o r  

where 

* 

-95- 



3.3.2.3 Ref inements  of t h e  Decodins Alsorithm 

1. It is  not necessary t o  reject  e n t i r e  stream when 

threshold v io l a t ed  ( L e .  a t  some 2,Lg-L$T).  L e t  kck be 

such t h a t  Lf = Lk and l e t  J be an optimized in teger .  

when threshold v i o l a t i o n  occurs  a t  depth 2, all decoded b i t s  

up t o  t h e  K - J  one are accepted, t h e  corresponding s t a t e  

stream d i g i t s  are recalculated, and on subsequent attempts 

t h e  appropr ia te  m e t r k s  are used. The next decoding of t h a t  

stream then starts at pos i t i on  k-J, rather than a t  pos i t i on  1. 

M 

Then 

t h  

This pull-up s t r a t e g y  w i l l  occas iona l ly  in t roduce  

errors i n t o  t h e  accepted stream sect-ions,  so an error- 

cleanup method must a l s o  be agreed on. There is fu r the r -  

more t h e  problem t h a t  J should probably increase  wi th  p, 

bu t  t h i s  may not  be se r ious  i n  t h e  "reasonable" range p<10. - 
2. I f  t he  pull-up s t r a t e g y  of (1) is  used, then a t  the 

end of the first m a t tempts ,  t h e  length  of t h e  d e f i n i t e l y  de- 

coded sec t ions  will have a monotone increas ing  tendency, e.g.: 

For t h i s  reason it might be use fu l  t o  modify t h e  round 

robin  s txz tegy  by next decoding backwards s t a r t i n g  wi th  t h e  

l a s t  no t  f u l l y  accepted stream and continuing with t h e  next- 

t o - l a s t  stream, etc. Af te r  recoding the  f i rs t  stream i n  t h i s  

manner, decoding would s t a r t  again i n  t h e  forward d i r e c t i o n ,  etc. 

-96- 



Unlike a true maximum likelihood decoder, a truncated decoder 

is - not symmetrical in both directions. Therefore, backward 

decodinu migh t  avoid some errors coded in the forward direction 

and vice versa. The code should be picked so it is strong in 

both directions. 

3 .  More complex algebraic codes ought to be considered,such as 

the three group code. 

4 .  A decoding failure does not mean that the entire block 

must be thrown away. In fact, in the definctely decoded 

sections there will probably be no errors whatever. When 

FAILURE takes place, one should probably go one more round, 

ignoring the threshold stopping rule and decoding each stream 

to its end, simply accepting the admittedly unreliable decoder 

decisions, With a systematic or quick-lookin code, one might re- 

construct the unreliable positions simply from the uncoded re- 

ceived information bits, 

5. The final stopping rule that would minimize the probability 

of error in the pull up mode (1) would be that failure results 

when further decoding results in no enlargement of definitely 

accepted stream sections. 

Alternately, it might be desirable to fix the number of 

allowed decoding attempts on each track, perform these, 

and accept the last decisions regardless of whether additional 

progress was being made or not. This approval might be 

particularly useful if several truncated decoders working in 

parallel wwld be available. As one possibility, say 3 sets 

of rn decoders would work continuously on 

received blocks as follows: 

3 successive 

-97- 



i' 
/ 

f 
,> 

/- 

/' _ _  e- -- ..- 

-98- 



6. One way t o  avoid r e j e c t i o n  i s  t o  i n c r e a s e  t h e  t runca ted  

c o n s t r a i n t  l e n g t h  p. Thus, fo r  example, i n  t h e  rudimentary 

decoding a lgor i thm of s e c t i o n  I, one would have a sequence 

p <p <... of c o n s t r a i n t  l eng ths .  1 2  

S t a r t i n g  w i t h  c o n s t r a i n t  l e n g t h  +decoding of a block would 

be attemptei? u n t i l  e i t h e r  a SUCCESS or a FAILURE w a s  declared. 

I n  t h e  l a t t e r  case, decoding would begin aga in  based on cons- 

t r a i n t  l eng th  p2 and would cont inue  u n t i l  e i t h e r  

w a s  accepted, or another  FAILURE r e s u l t e d .  I n  t h e  former case, 

decoders would r e v e r t  t o  c o n s t r a i n t  l e n g t h  ul; i n  t h e  l a t t e r  

case c o n s t r a i n t  l e n g t h  would be inc reased  t o  p 3 ,  etc. 

wi th  c o n s t r a i n t  l e n g t h  v1, would be f i n a l ,  

a new stream 

FAILURE 

T h i s  game could be played i n  a v a r i e t y  of ways. Another 

p o s s i b i l i t y  is  t o  

,2- 3- 
l e n g t h  vrn is  used 

dec lared .  I n  t h e  

v < M  < 0 . 0  511, (m 

have a sequence of c o n s t r a i n t  l e n g t h s  

i s  t h e  number of streams). C o n s t r a i n t  

u n t i l  one stream is accepted or FAILURE i s  

former case, c o n s t r a i n t  l e n g t h ' p m  - w i l l  

be used u n t i l  another  stream is accepted or FAILURE is de- 

clared. 

7.  It is n o t  clear t h a t  t h e  pull-up s t r a t e g y  of (1) is  i n  

t h e  non-asymptiotic case more desirable than  t h e  rudimentary 

one. Indeed, it may be much simpler t o  shor t en  t h e  stream 

l e n g t h  N and use  t h e  la t ter  s t r a t e g y .  

-99- 



8.  Thc f i n a l  p o s s i b i l i t y  i s  t o  b o o t s t r a p  on a concatenated 

code. To s t a y  simple, suppose an R-S codz is  used over G F ( 8 )  

t h a t  is s i n g l e  e r r o r  c o r r e c t i n g  ( n o t  r ea l i s t i c ,  of c o u r s e ) .  

The a l g e b r a i c  ra te  t h e n  i s  7. 5 

Form 5 information streams and add 2 p a r i t y  check streams 

using t h e  R-S r e l a t i o n .  Next encode each of t h e  streams by u s e  

of ra te  1 / 2  convolu t iona l  code 

l eav ing  each node. The ma t r ix  

have t h e  p a r t i t i o n e d  form 

GO 0 
G1 0 
G2 GO 
G3 G1 
G4 G2 
G5 G3 
0 G4 
0 G5 

(K = 

0 
0 
0 
0 
GO 
G 1  
G2 
G3 
G4 
G5 

t h a t  has  e i g h t  6 -b i t  branches 

of the convo lu t iona l  code w i l l  

6 i n  this example): 

0 
0 
0 
0 
0 
0 
SO 
G1 
G2 
G3 
G4 
G5 

Here Gi are 3 x 3 b inary  metrics t h a t  are restricted t o  have 

the forms 

or  , n= 1,2,..., 7 

-100- 



H =  

I n  t h i s  way Gi's are r e p r e s e n t a t i o n s  of t h e  powers of t h e  prim- 

i t i v e  e lement  o v e r  GF(8). I t  can  be shown t h a t  t h e  r e s t r i c t i o n  

does Lot damage t h e  e r r o r  c o r r e c t i n g  c a p a b i l i t i e s  of t h e  code, 

a t  l eas t  n o t  i n  t h e  l i m i t  of large c o n s t r a i n t  l e n g t h s ,  K > > 1 .  

I f  a c o n v o l u t i o n a l  code of t h e  i n d i c a t e d  form is  used, t hen  

it can e a s i l y  be shown t h a t  t h e  cor responding  branch t r i p l e t s  

of t h e  7 streanis w i l l  have the R-S r e l a t i o n s h i p .  I n  f a c t ,  i f  we 

number t h e  d i g i t s  as i n d i c a t e d ,  

1 2 3  

4 5 6  

7 0 9  

1 0  11 1 2  

13 14 15 

16 17 18 

1 9  20  2 1  

they w i l l  s a t i s f y  the  parity check Matrix 

- r 
1 1 0  010 010 100 110 100  000 

111 1 0 1  1 0 1  010 111 010 000 

010 011 011 001  010 001  000 

000 1 1 0  010 010 1 0 0  1 1 0  100 

000 111 1 0 1  1 0 1  010 111 010 

000 010 011 011  0 0 1  010 0 0 1  
- - 

-101- 



Consequently, sets of these digits will be algebraically related, 

and thus bootstrapping will be possible. If the bootstrapping 

is to be simple, individual bits in the triplets 

dependent metrics. This is not rigorously possible, but from a 

practical point of view it may be enough to provide three separate 

parity check equations, each involving only one digit of the 

triplet , 

should get - in- 

For digits 1,2,3 and parity checks are 

100 001 001 101 100 101 000 

010 100 110 100 000 110 010 

001 001 101 100 101 000 100 

It wouLd seem possxle to keep state information for each 3igit 

according to.its parity block set and then perform ordinary sinrle 

parity bootstrapping, 

pleted, the R-S code can be used to correct remaining errors in 

the estimated information streams , Of course, the H-Matrix cm-  

tains the possibilities for 3-group codes, and even more compli- 

cated ones, all of which might be worth investigating. 

After the decoding of all streams is com- 

-102- 



4 , o  Conclus icns  and Reconmendations 

Tables 1 . 0 . 1 ,  2 .5 .1 ,  and 3.1.1 summarize t h e  c o n p l e u i t y  

of t h e  concz tena ted  and hybr id  coding  sys tems s t u d i e d .  I t  

appears t h a t  the conca tena ted  system is more cost e f f e c t i v e  

for approximately the same performance as t h e  hybr id  sys tems.  

Its on ly  drawback l i e s  i n  t h e  i n t e r l e a v i n g  requi rements  which 

i n c r e a s e  both  t h e  decoding d e l a y  and t h e  gaps of  non-data 

(most ly  par i ty-check  b i t s )  by over an order of magnitude 

r e l a t ive  t o  t h e  h y b r i d  system. On t h e  o t h e r  hand, these 

probably  are not: a d e t r i m e n t  f o r  t ime-d iv i s ion  mul t ip l exed  

u s e r s ,  and for systems where t h i s  i s  a problem, staggered 

i n t e r l e a v i n g  w i l l  r educe  t h e  gap l e n g t h s  t o  t h o s e  of t h e  

hybr id  system, p o s s i b l y  at a small cost i n  decoder complexity. 

It i s  t h e r e f o r e  o u r  conc lus ion  cha t  a con-aten-.ted 

coding system u t i l i z i n g  a ra te  1/3 , c o n s t r a i n t  . length-8 , 
i n n e r  c o n v o l u t i o n a l  coder -Vi te rb i  decoder, a 2048-bit  Reed- 

Solomon o u t e r  b lock  coder-decoder, and 16  words of i n t e r -  

l e a v i n g ,  o p e r a t i n g  a t  1 0 0  Kbps data rates is implementable  

i n  i t s  e n t i r e t y  by a system employing approximate ly  333 TTL 

i n t e g r a t e d  c i r c u i t s .  The coding  g a i n  a t  Pb = 10’’ for t h i s  

system i s  over 9dB. Hybrid bootstrap s e q u e n t i a l  decoding 

would r e q u i r e  on t h e  order of 50% more integrated c i rcui ts  

of t h e  ECL-MSI (such as MECL 10,000) i q i c  fami ly .  Furthur- 

more, t h e  performance of t h e  l a t te r  would va ry  w i t h  data 

ra te ,  be ing  s l i g h t l y  s u p e r i o r  (0.2dB) at 1 0  Kbps b i t  and 

somewhat i n f e r i o r  (1.0 dB) a t  100  Kbps. 

-103- 



It  s'Tculd also be emphasized t h a t  t h e  s imula t ions  of 

t h e  hybr . Dtstrap system a r e  no t  c x p l e t e l y  conclusive,  

and hence th.e t echn ica l  r i s k  is much g r e a t e r  i n  t h i s  system. 

Among i t s  p r b x i p a l  weaknesses are i ts  s e n s i t i v i t y  t o  AGC 

inaccuracy and phase t r ack ing  errors, which has been shown 

( R e f .  8)  t o  be considerable  even f o r  ord inary  sequen t i a l  

decoding. I n  conca temted  decoding, on t h e  o t h e r  hand, 

the-se channel inaccurac ies  produce a moderate known degra- 

da t ion  (Ref. 8 )  on t h e  inner V i t e r b i  decoder, which are 

e a s i l y  shown to reflect d i r e c t l y  and i n  almost the same 

amount on t h e  o v e r a l l  coding scheme. 

Otherwise t h e  per formime of t h e  t w o  seemingly 

r a d i c a l l y  differen: approaches are remarkably s i m i l a r .  

The basic reaso' 'n retrospect, is t h a t ,  as information 

t3eory s s t a b l i s h e s ,  h ighly  e f f i c i e n t  communication over  a -  

Gadssian charne l  r equ i r e s  extremely long block lengths .  

The hybrid and concatenated systems considered here -1 t i -  

l i z e  about  the same "superblock" length  - 2 to 3 Kbits - 
w i t h  highly e f f i c i e n t  convolut ional  and block codes - 
hence t h e  sbniiar performance. 

One f i n a l  advantage of implementing a concatenated 

scneine is t h e  e s s e n t i a l l y  ind iv idua l  and s e l f - j u s t i f y i n g  

na tu re  of each portion of the system. V i t e r b i  decoders at 

tt:est: data rates 2 x i s t  a l r eady  (a lbei t  only f o r  t h e  less 

powerful K=7, R=1/2 code and n o t  Lor the K=8, R=1/3 )  an? 

cctuld be i n s e r t e d  without procurement delay as the fmer 

decoders. 

-104- 



The outer Rced-Solomon codcr-decoder could be easily 

d +ustifie2 as a worthwhile development in its OW right, since 

such a powerful (255 characters over GF(2 ) with 16- error- 

correction capabi l i ty )  decoder has never been implemented in 

hardware. Finally, even the relatively straightforward 

interleaver could be justified by itself as a means of breaking 

up burst errors in convolutional decoding. Thus, such a de- 

velopment would produce multi-purpcse components as well as 

an integrated system which might once and for all conclude 

the quest for the ultimate coding system for space comiiufii- 

ca-:ions 

8 

-105- 



Appendix A 

This appendix conta ins  a For t ran  and an assembly 

language vers ion of a p a r t i a l  R-S decoder program. 

mally t h e  inputs  t o  t h i s  program are :  

Nor- 

1. J = the  number of bits per  R-7  symbol. 

2. E = t h e  designed number of correctable errors. 

3 .  The c o e f f i c i e c t s  of t h e  J-degree p r imi t ive  

polynomial of a f i e l d  element which genera tes  

the f i e l d ,  

4. The 2E syndromes represented as i n t ege r s .  

However, t o  avoid computing ths syndromes by hand, 

a z'ew add i t iona l  staterlie? cs w e r e  added a t  the  beginning 

of t h e  program t o  enablc the  computer t o  determine these  

q u a n t i t i e s  f r o m  t h e  error loca t ions  and error values.  

O f  course,  i n  a real system the syndromes woul'd be com- 

puted f r o m  t h e  received word. But  t h e  method used here  

i s  more convenient i n  checking and timing the var ious  

s t e p s  i n  t h e  decoding operat ion.  The program outputs  are 

t h e  error loca t ions  and the  error values.  

The For t ran  vers ion  of t h i s  program c o n t a i i ~ s  numerous 

comment cards describing t h e  var ious  steps i n  t h e  program. 

The assembly language vers ion  follows t h e  same format as 

t h e  Fortran version. I n  addi t ion  t o  t h e  basic IBM 1130 

assembly language i n s t r u c t i o n s ,  a few i n s t r u c t i o n s  unique 

-106- 



to the LIfWU3IT system have been used. 

of these i n s t r u c t i o n s  is given i n  Table A.1 .  

A brief descr ipt ion 

Following Table A . 1  is  a l i s t i n g  of first t h e  For- 

tran and then the assembly language version of t h i s  program. 

-107- 



k 
a, 
4J 
m 
4 
tr 
Q) 
k 

C 
4J 

k 
0 +' a 
rl 

3 u 
0 
a 
h a 
0 u 

k 
0 
3 
a 
rl 

3 u u 
a 
0 
4J 

k 
a, 
3 
tn 
-d 
m 
Q) 
k 
h a 
0 u 

2 

k 
a, 
+, 
u) 
*4 
tn 
a, 
k 

k 
0 
4J 
a 

l-l 

3 u 
0 a 

z 

c c c o  
4 J 3 3 - P  
-4 -4 rl 
3 3 3 k  

a, 
r l m m u  

Q) 
tn c a c u 
k 
a, 
4J 
c 
H 

a, 
F c a c 
0 
k 
a, 
4J c 
kf 

P; 
0 
I 

4 
m 
3 
4 u 
X w 

d 

k 
0 
4J 
rd 
r-l 

? u u 
ld 

E 
0 
k 
w 
k 
a, 
3 
m 
4 
F 
a, 
k 
4J 
0 
a 
k 
4J s 
3 cn 

2 

a, c 
4J 

m 
r-l 
a 
3 w 
Q) 

.cJ 
rl 
7 
m 
Q) 
k 
Q) c 
4J 
m 
M 
Q) 
rl 
c 
7 
c u c 
a 
k 
R 
5 
E: 
a 
a, 
L= 
0 

-hw 
R 

k 
m a ,  

3 
krn 
Q) -4 
3 t r  
r a t u  
r l k  
F 
a,w 
k O  
Q ) U  a+, 
a c  
@ a ,  
k 3  u c  e o  
H O  

JJ 
a, m 
c 
0 
4 
JJ u 
3 
k 
4J 
m 
E: 
H 

Q) m a 
3 
tn c a 
4 
si 
rl n 
E lu 
m 
2 
c? 
(*I 
rl 
rl 

c m 
H 

a, c 
4J 

0 u 
4J c 

t 
rl 

3 m 
B 

R 

i 2 
H 
d 

rl 

2 
0) 
rl a a 
I3 

-108- 



I 
I 

! 
i 
I 
i 

i 
i 
I 

i 
I 
I 

I 

I 
I I 

i 
I 
I 
I 

I 
j 
I 

I I 

i 
I 

i 
i 
i 
I 
! 
1 
I 
1 

i 
I 

i 

I 
I 
i 
I 
1 
i 
I 

i 
I 
i 
I 

i 

I 
I 

I 
I 
i 
1 
1 

I 

I 

I 

I 

! 
j 
I 
I 
I 

i 
! 
1 
I 

i 
i 

i 
i 

I 
I ! 

i I 

I 
I I 

I 
I 

i 
1 
I 
I 

n* I 
I r( +i  

i 

I I 
I I 

i 
I 
i 
! 

i 

I 

I 
i 
1 

'I 
I 
i 
1 
! 

n 

0 
x 

I 

I 

i f 
. u  . .  

c .  

I 

I 
i 
I 
i 



. .  

I 

i 

i 

i 
1 
I 
I 

! 
I 
t 
1 

i 

I 

I 
I 

I [ 

1 
i 
I 
i I 

A :  

-.- -- -.-- . .. 

! 
i 
i 
i 

I 
I 

! 
i 
i 

I 

1. 

I 
i 

I i 

I 
i 

I 

I 
i 
j 

i 
i 

1 
! 

I 

I 
i 

i 
! 

t 
i 
I 
I 
1 
! i 
i 

I 

I 

; 

I 

i 
i 

i I 

i 
1 
1 
I 

t 

i 

I 

I- 
? -> f, 

'4 w *?! ! 1 3 1  

I 

t 
i 

i 

I 
I 
i 

- 1  

i 



-- .'+ . 

I 

I 

i 
I 
i 

i 
j 

i 
I 

I 

i 

! 
! 

I 
I 
i 

! 

i 

I 
I 
I 

I 

I 
1 
I 
I 
I 

! 

I 

i 
I 
I 
i 

I 

i 1 

I 
I 
i 

I 
I 

I 

I 

I 

I 
I 
I 

0 
3 
a 
rr) 

0 
r( 
0 
N 

0 0  
t 

I I  c 
rc 

0 

0 n 

l-id D 
m 4 l u  

c li !m 
rl + 

.(L. 

c _. m 
Y= 
M 

I 



i 
i 
i I 

! 
1 

i 

I 
i 

I 
1 

I 

I 
I 

1 
j 

I 
I 
I 

i 

I 

I 
I 
! 

i 
I 
I 

I 

I 

! 

I 
i 

i 

I 
I 

! 

i 
I 

i 
! 
I 

i 
I 
1 
i 

i 
i 

I 
I 
I 

1 
i 
I 
I 

I 

I 
I 
I 
i 

l 
I 

0 
* I  

U') 
MI 

4 
'"I w 
e i  

= I  

G 
3 
0 
in 

0 
CJ 

c 

0 
a- 

c; I n 

cu 
P 
L= 

-H 

n 

I r )  
u z 
n 
c 
n 

0 E/ 0 

tf; 

1 -112 



POOR 

.i 
I 

i 

or 1 t i t 

i 

I 

I 
I 
i 

j 
I 

i ,  

i I  

! 

I 
I -  
I 
I 

I 

I 
I 
I 

I 
I 
I 

i 
i 

! 

1 

I 
i 

I 

I 

I 

t 

U 
3 
r: 
i 

w 

L! T l  I 
n 41 

.' + - 1  

W ,  d 
I 
n 0 .  

I' 

i 



45 
uk-  

n 

u jr4 

=IK 

n -'&Id c;. 



The following pages give the assembly languap 

version of the preceding program. I It is organized so 

that the input and output statements are in Fortran and 

the res t  of the program is in an assembly language sub- 

program. 

-115- 



I 

! 

i 
I 

I 
i 
! 

1 
I 
! 
i 
I 

i 
i 
I 
f 

i 
! 1 
1 

t 

f 

i 

! 
i 
i 

i 
i 
i 

1 
! 
I 

i 

I 
4 

i 

i 
I 
i 
i 
f 
i 

I 

i i 

i 
j 
I 
1 

I 
i 

I 

I 

! 

i 

! 
I 

i 
I 
i 

i 
i 
I 

! 
! 
t 

t 
! 

! 
I 

I 

i 

1 

i 
# 

i 

1 

i 
i 

I I 

f 
1 

1 i 

I 
I 
I 

f 
I 

1 

i 

i 

t 

I 

i 

t . 
I 
i 
I 

i 
i 
I 

i 
I 

i 

1 

4 

I I 
i 

I 
I 

! 

I 

I 
! 
i 

i ! 
I 
i 

i 
I 
I 
I 

I 

n 

v1 1 

%i r;L 

" I  

0 

- iu, 

i" i 
i 

- -  i 
I 



. .  - 7  --._ _ _  *. 

i 
i 
I 

i 
I 
i 
i 1 
I 

i 

! 

i 
I 
I 

I 
! 1 
i 
1 

i I 
I i 

I 

1 I 

I 
1 

i 
i 
i 

t 
1 

i 

i 
i 

i 
! 

i 

I 
i 
I 
I 

Fl I F !  

I 
t 

j 

1 
i 

i 
I 

! 

! 

i 

t 

I 
i 

I 

I 
i 
i 

1 i 

F! 
4 

I 

a rt 
+ 

4 
0 

'I a- + -  + i o  



i 
I 
I 

i i 
i 

I 
I 
! 

i 
1 

! 
I 
I 

i 

i 

I 
f 
! 

i 

i I 
i : 

* I  
i 

f 
I 
t 

I 

i 

1 I 
I 

r'! 0 m n 

0 
0 

t i -  



c) 

. .  .. - 

rl 

i I 

1 .  I 

hi 
G 
U? w 
0 2  

t \o 

n 



I 

Cl 
* 
c- 
a! c w  

I 

*' iu" I 

I 

s 
ul 
119 

dn 
J 
D U  



CL 
c 

: c c  3 0 0  

* 



! 

I 

I 

I 
I 

1 
I 

i 
1 
I 

I 
I 
! 

I 

I 

f 
t. 
n 
3 

w 
cc1 

0 
01 

t 
9 
M ( U  

9 I- O 5 

i I z !  
* I  * i A l *  * 

I I  

'""P" 



- ' . ' -  '"'h . .*- t ,.. 

',I 
s 

0 0 
4 2  
C 

-i 3 
c 111 

J 



3 0 0  

>ccj 
3 Q O  

i 

2 0 0 3 0 0  i 

0 
c 

D 
2 
D 



i I 

I 
i 

I 

I 
1 

'JI 

Lu 

%! 

0 
Li-1 
a- 
m 

! 

.- , 
I 
I 
I 

I 

I 
i 

1 

I I 
I 

j 
i 

i 
! 

i 
* I  \ o I  

I 

1 
I 

i 
i 
I 
1 
! 

I 

i 

i 
1 
i 
I 

I 
I 

f 

I 

, 
I 

I 
I I 
t 
I 

I 
I 
I 

! 

! 

i 
i 
I 
i 

I 

i 
! 
I 

1 

i I 
I I 

i I 

j , 
I 

3 i f  

I I 
t I 

I 
I 

I 
I 

: -  
I 
I 

i 
i 
! 
1 

i 
i 

i 

I 
i 
I 
I 

I 
!E 

I 
1 
I 
I 
I I 

j 

I 
! 
I 

i 

I 
I 
I 

i 

I 

t Q  
G I -  I J 

u CI 
3 
u 



! 
I 
I 
I 
i 

1 
I 

1 
i 
I 

I 
I 
I 

f 

us- 
3 1  

! 
i 
I 
i 
i 
I 1 ! 
i 
I 

I 
I 

I 

I 
* 
I 
0 
L n  
In 
ro 
.d + 

c o  
L! a! 

+a 
r- ig 

!Q 

3 .I I 



I 
f 
I 

I 
f 
i 

i 
I 

I ! 

I 

I 
I 

i 

1 
1 
! 

I 

! 

f 
! 

f 

i 
I 
1 

! 
i 
i 
1 
! 
I 

I 
I 
i 
t 

i 

i 

! 
! 

f 

j 

i 

I 

i 
i 

i 

I ! 

i 
i 
1 
i 

i 
f 

f 

i 
i 

i 

t 

! 

1 

i 
4 

j 

i 
i 
1 

i 
i 

I 

i 
I 

I 
I 

i 
i 

1 
i 
I 

i 
I 

I 

I 

j 
I 
! 
i 
! 

1 

! 
! 

1 
i 

i 
i 
t 

i 
I 

i 
i 
i 
i 
I 

i 
i 
! 

I ! 
i 

Oi 
m! 

I 
I 

i 
i 
I 

f 

I 
I 
! 

i 
I 

* 
8 
e cv 
0 
I) 
3 + 

k t 0 0  t a 

i 
1 
i 
I 
i 

! 

f 

I 

i 
1 
i 
i 

t 
I 
I 
I 
i 

I 

! 
! 

I 

i 

I -  
! 

I 
i 

I 

I 
i 
i rl t 

i 



i 
I 

I 

! 
I 

I 

t 
! 
I 
I 
! 
I 

I 
I 

! 
I 

i 
! : 

! 
i 

I 

I 
I 1 

i 

! 
i 
I 
i 

i 

I 
1 
i 

f 
f 
1 

i 

1 
i 
I 
! 
i 

i 
i 
i 

i 

1 

i 
: 

i 
! 

i 
i 

d 

I 
i 

! 

t 

c: 

w 
w ,  c 
a: 

i 
i 

i 
I 

! 

i 

i 
I 

I 

: 
I 

! 

1 
i 

I 

! 

I 

! 

I 

t 

I 
i 
3 

i 
i i 
I 

1 

1 

i 
t 

f 
t 
I 
: 

i 
f 
u .-4 .f. 

I 

I 

L 

I 

I 

t ! 

i 

t t 
I 

I ! 

i 

i ! 
I 
i 

: 

! i 
I t '* 

i n  
? 

i 

I 
I 
i 

! 

I 
i 

i 
i 
j 

f 

1 

, 
i 

I 

I 

! 

i 

i 

i 
i 
i 

i 

I 
i 

i 

I i 
i 
I 

I 

30 
tf: c 
LA o\ 

i 

! 
i 
1 

f 
! 
I 

[ 
I 
I 

i 

I 
i 
! 
! 

I 

i 

i 
i 
i 

i 
I 

f 
f 
! 
I 

i 
'0 

hi '13 

I I 
t 
i 

i 
1 
I 

I 

t 
i 
i 

1 

i 
I 

i 

i 
i 
I 
f 
t 
t 
I 
i 

I 

! 

j 
I I 

! 

i 
I 

i 
i 
I 

j 

i 
I 
i 

1 
i 

i 

! 

! 
! 

j 
1 

i I 
I 
6 
! 

i 

i 
! 

i 
i 
! 

L 
I 



5 
r- 
KB 
Q 

b 0 a- 
c 

b 



I 

! 
i 
! 
! 
! 
I 

I 

i 
1 
I 
i 
i 
i 

I 

I 

i 
I 
! 

! 
i 
! 

i 
I 

I 
I 

i 
i 
t 

! 
i 

i 
I 
I 
i 
1 

i 
I 

I 

i 
I 

I 

I 
I 

I 
1 
i 
I 
f 

i 
I 
i 
I 

I 

I 

I 
i 

I 
i 
I 
i 1 
: 
i 
! 
I 

I 
i 
I 
I 

I 
I 
i 
i 
I 
! 

i 

I I 

- r  . 
' * I  ' 

i 
I 
i 
i 
i I 

I 

I 
! 

i 
I 
t 
I 

1 
i 

I 
I 
i 
i 

i 

I 
i 

I 
I 

I 

I 

j 
I 

j 

I 

1 
1 

i 

I I 

! 

1 

I 

I 
I 

! 
I 
I 

i 
1 
i 
I 

i 

! 
i 

3; 
-. 

i 

I 
I 

I 

i 

I I 
! 

i 

I I i 

a 
9 
*&I c 

* 
8 
G 
(v 
0 
w 
-I 
+! 

I 

lo rl t a  
u1 z 

o\ti 

L I U  

r-i ' 

et: o u  

c c :  c c  
, 

"I i 



i 
i 
I 

I 

I 

I 

j 
I 

I 
t 

i 
i 
I 

i 
I 
I 
I 

! 
I 
I 
I 
I 

I 

I 
0 io C 

u; 
Q. 
i3 
n 
J) 

uc( 

(u 

2 
L 

* 



I 

i 
I 

I 
I 

1 
I 
1 

I 

I 
! 
I 

f 
i 
I 

1 1 

I 
I 

i 
f 
I 

I 
i 

i 
I 
i 
I 
f 
i 

I 
i 
I 

i 

i 

I 
! ! 

I 
I 
i 

i 
I 

i 
I 

I 

. j  
I 
I 

.o . 
m' 

w 
a, a, 

i 
I 

! 
I 
! 
I 

i 

f 

I 

I 

I 
! 
I 

j 
I 
[ 
i 
i 

i 

i 
I 

I 

I 
I 

! 
i 

I 
I 

I 

j 
i 
i 
I 
i 
i 
i 

i 
1 
i 

I 
i 
i 

i 
i 

'& :L 

L i C  C. 

u: c> + 

I 

I 
i I 

I 
I 
I 
I 
I 
i 
! 
I 

I I 

I 
I 
i 
i 
1 

I 

a 

! 

! 
I 
! 

I 

I 
I 

! 
f 
I 

I 

i 
! 

i 
i 
1 
i 
! 
I 
i 
i 
! 
i 
i 
i 
i 

. .- 

I 

! I 
i 
i 

! 
! 
I 
! 

I 
I 

I 

c 
Cl.1 

I /  i 
i* 2 ;  
I 

r 
t .  
I 

i *  



i 
- 1  

I 
1 
1 

j 

i 

i 
I 

1 
I 

i 
i ! 

i 

t 
i 
i 

I 

! 

i 
! 

KA 

i 
I 
i 

i 
i 
i 

I 
! 

i 

1 

! 

I 

I 

i 

i 

i 
I 

i 
! 
I 
! 

1 I 

j 
i 
I 
i 

! 
I 
i 

I 
I 

i 
1 

i 
I 
! 

I 
I 

i 
1 
I 

j 
I 
i 
i 
i 
! 

i 
I, 

I 
I 
1 

I 
I 
I 

i 
i 
I 

i 

1 

i 
! 

$ 

i 
I 1 

I 

I ! 
I 

I 
I 

! 
f 

! 
I 
I 
I 

1 

i 
i 

t 

I 
I 

-.. .... ._ 



.REFERENCES 

1. 

2. 

3 0  

4.  

5 0  

60 

7. 

8. 

10. 

11 0 

1 2  0 

1 3  

1 4  

Po E l i a s ,  "Error-free Coding," IEEE Trans.  on Information 
Theory, V o l  IT-4, 1954. 

G. D. Forney, Concatenated Codes, MIT Press ,  Cambridge, 
Mass. 1966.  

M. S o  Pinsker,  "On t h e  Complexity of Decoding," Prob. 
Peredachi Information, V o l .  I, No. 1, pp 84-86, 1965. 

I. Go S t i g l i t z ,  "Iterative Sequent ia l  Decoding," IEEE 
Trans. on I n f o m a t i o n  Theory, V o l .  IT-15, pp. 715-72f, 
E. 1969. 

I. S o  Reed and Go Solomon, "Polynomial Codes over Certain 
F i n i t e  F ie lds , "  Journ. S.I.A.M., V o L  8,  1960. 

J. Po Odenwalder, "Optimal Decoding of Convolutional Codes," 
PhD Disse r t a t ion ,  School of Engineering and Applied Science, 
Univers i ty  of Ca l i fo rn ia ,  Los Angeles, March, 1972. 

J. A. Heller, "Short  Cons t r a in t  Length Convolutional Codes," 
Jet Propulsion Laboratory, California I n s t i t u t e  of Tech- - 
nology, S ace Programs S G a r y  37-54, V o l .  111, pp. 171-177, 
O c t o  /Nov. E9 68. 
LINKABIT Corporation, "Coding Systems Study for High Data 
R a t e  Telemetry Links," F i n a l  R e p o r t  on Contract  NAS2-6024, 
NASA Ames Research C e n t e r ,  Moffett F i e ld ,  Ca l i fo rn ia ,  Jan.1971. 

LINKABIT Corporation, "Performance Study of V i t e r b i  Decoding 
as Related to Space Communications," F ina l  R e p o r t  on Con- 
tract DAAEO7-71-0148, USASATCOMA, Fort Monmoath, New Jersey,  
(Unclass i f ied) ,  Jan.1972. 
R. Do Gallager, Information Theory and Reliable Communi- 
cation, New York: Wiley, 1968. 

E. R. Berlekamp, Alqebraic Coding Theory, New York: McGraw- 
H i l l ,  1968. 

J. Lb Maasey, "Shift-Register Synthes is  and BCH Decoding,." 
IEEE Trans. on Information Theory, V o l .  IT-15, pp 122-127, 
Jan. 1969. 

To C .  Bartee and Do I. Schneider, "CompWation with F i n i t e  
Fie1ds"Information and Control, V o l .  6, pp 79-98, 1963.  

L. Bo Hofman, "Performance R e s u l t s  for a Hybrid Coding 
System,'" Proc. of the Internat ional  Telemetry Conference, 
V01o V I I ,  pp 969 -476, Sept. 1971 8 Washington DOC.  

L b  B, Hofman and J. Po Odenwalder, "Hybrid and Concatenated 
Coding Applications," to bs published in Proc. of the fnter-  
na t iona l  Telemeterinq Conference, V o l .  V I h ,  Oct., 1972 I 
LOS Angeles, C a l i f .  



1 6 ,  F. J e l i n e k ,  and J, Cocke, "Boo'tstrap hybrid decoding for 
symmetrical b k m y  input channels ," Information and Control, 
March 1 9 7 1 .  

1 7 ,  F .  J e l i n e k ,  "A Study of Sequential Decoding," NASA CR-114450, 
February, 1972. 

1 8 ,  Do D, Falconer, "A hybrid coding scheme for discrete memory- 
less channels ," B e l l  System Technical Journal, v o l .  48 ,  
pp, 691-728, March 1969. 

-135- 


